已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,
已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为Kn.(1)求数列{an}...
已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为Kn.(1)求数列{an}的通项公式;(2)若bn=2Knan,求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
(1)∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,
∴Sn=n2+2n(n∈N*).…(3分)
当n=1时,a1=S1=1+2=3;
当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1 ①
当n=1时,a1=3也满足①式.
∴数列{an}的通项公式为an=2n+1.…(6分)
(2)由f(x)=x2+2x求导可得f′(x)=2x+2.
∵过点Pn(n,Sn)的切线的斜率为Kn,
∴Kn=2n+2.…(8分)
又∵bn=2Kn?an,
∴bn=22n+2(2n+1)=4(2n+1)?4n,
∴Tn=4×3×41+4×5×42+4×7×43+…+4(2n+1)?4n ①
由①×4得:∴4Tn=4×3×42+4×5×43+4×7×44+…+4(2n+1)?4n+1 ②
①-②得-3Tn=4×(3×4+2×42+2×43+…+2×4n-(2n+1)4n+1)
=4×(12+2×
-(2n+1)4n+1)=
?
×(6n+1)4n+1
所以 Tn=
×(6n+1)44n+1?
…(12分)
∴Sn=n2+2n(n∈N*).…(3分)
当n=1时,a1=S1=1+2=3;
当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1 ①
当n=1时,a1=3也满足①式.
∴数列{an}的通项公式为an=2n+1.…(6分)
(2)由f(x)=x2+2x求导可得f′(x)=2x+2.
∵过点Pn(n,Sn)的切线的斜率为Kn,
∴Kn=2n+2.…(8分)
又∵bn=2Kn?an,
∴bn=22n+2(2n+1)=4(2n+1)?4n,
∴Tn=4×3×41+4×5×42+4×7×43+…+4(2n+1)?4n ①
由①×4得:∴4Tn=4×3×42+4×5×43+4×7×44+…+4(2n+1)?4n+1 ②
①-②得-3Tn=4×(3×4+2×42+2×43+…+2×4n-(2n+1)4n+1)
=4×(12+2×
16×(1?4n?1) |
1?4 |
4 |
3 |
1 |
3 |
所以 Tn=
1 |
9 |
4 |
9 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询