对于数列{xn}满足x1=a(a>2),xn+1=x2n2(xn?1)(n=1,2,…).(1)求证:2<xn+1<xn(n=1,2,3,…
对于数列{xn}满足x1=a(a>2),xn+1=x2n2(xn?1)(n=1,2,…).(1)求证:2<xn+1<xn(n=1,2,3,…);(2)若a≤3,{xn}前...
对于数列{xn}满足x1=a(a>2),xn+1=x2n2(xn?1)(n=1,2,…).(1)求证:2<xn+1<xn(n=1,2,3,…);(2)若a≤3,{xn}前n项和为Sn,求证:Sn<2n+a2(n=1,2,…)
展开
1个回答
展开全部
证明:(1)(数学归纳法)先证:xn>2.
∵当n=1时,x1=a>2成立
假设n=k时,xk>2.
则:xk+1=
=
?
=
[(xk-1)+
+2]>
×4=2
∴xn>2
又:xn+1-xn=
-xn=
<0
∴xn>xn+1,
就是说n=k+1时2<xn+1<xn(n=1,2,3,…)也成立.
综上知:2<xn+1<xn
(2)xn+1-2=
-2=
=
?(xn-2)
∵2<xn≤x1≤3
∴
=
[1-
]≤
?(1-
)=
∴xn+1-2≤
∵当n=1时,x1=a>2成立
假设n=k时,xk>2.
则:xk+1=
| ||
2(kx?1) |
1 |
2 |
[(xk?1)+1]2 |
xk?1 |
1 |
2 |
1 |
xk?1 |
1 |
2 |
∴xn>2
又:xn+1-xn=
| ||
2(xn?1) |
xn(2?xn) |
2(xn?1) |
∴xn>xn+1,
就是说n=k+1时2<xn+1<xn(n=1,2,3,…)也成立.
综上知:2<xn+1<xn
(2)xn+1-2=
| ||
2(xn?1) |
(xn?2)2 |
2(xn?1) |
xn?2 |
2(xn?1) |
∵2<xn≤x1≤3
∴
xn?2 |
2(xn?1) |
1 |
2 |
1 |
xn?1 |
1 |
2 |
1 |
2 |
1 |
4 |
∴xn+1-2≤
1 |