如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1)求证:△DOC是等边三角形;(2)当AO=5...
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1)求证:△DOC是等边三角形;(2)当AO=5,BO=4,α=150°时,求CO的长;(3)探究:当α为多少度时,△AOD是等腰三角形.
展开
1个回答
展开全部
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴△BOC≌△ADC,∠OCD=60°,
∴CO=CD.
∴△COD是等边三角形;
(2)∵△ADC≌△BOC,
∴DA=OB=4,
∵△COD是等边三角形,
∴∠CDO=60°,又∠ADC=∠α=150°,
∴∠ADO=∠ADC-∠CDO=90°,
∴△AOD为直角三角形.
又AO=5,AD=4,∴OD=3,
∴CO=OD=3;
(3)若△AOD是等腰三角形,
所以分三种情况:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO,
∵∠AOB=110°,∠COD=60°,
∴∠BOC=360°-110°-60°-∠AOD=190°-∠AOD,
而∠BOC=∠ADC=∠ADO+∠CDO,
由①∠AOD=∠ADO可得∠BOC=∠AOD+60°,
求得α=125°;
由②∠ODA=∠OAD可得∠BOC=150°-
∠AOD
求得α=110°;
由③∠AOD=∠DAO可得∠BOC=240°-2∠AOD,
求得α=140°;
综上可知α=125°、α=110°或α=140°.
∴△BOC≌△ADC,∠OCD=60°,
∴CO=CD.
∴△COD是等边三角形;
(2)∵△ADC≌△BOC,
∴DA=OB=4,
∵△COD是等边三角形,
∴∠CDO=60°,又∠ADC=∠α=150°,
∴∠ADO=∠ADC-∠CDO=90°,
∴△AOD为直角三角形.
又AO=5,AD=4,∴OD=3,
∴CO=OD=3;
(3)若△AOD是等腰三角形,
所以分三种情况:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO,
∵∠AOB=110°,∠COD=60°,
∴∠BOC=360°-110°-60°-∠AOD=190°-∠AOD,
而∠BOC=∠ADC=∠ADO+∠CDO,
由①∠AOD=∠ADO可得∠BOC=∠AOD+60°,
求得α=125°;
由②∠ODA=∠OAD可得∠BOC=150°-
1 |
2 |
求得α=110°;
由③∠AOD=∠DAO可得∠BOC=240°-2∠AOD,
求得α=140°;
综上可知α=125°、α=110°或α=140°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询