如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1

如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1)求证:△DOC是等边三角形;(2)当AO=5... 如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1)求证:△DOC是等边三角形;(2)当AO=5,BO=4,α=150°时,求CO的长;(3)探究:当α为多少度时,△AOD是等腰三角形. 展开
 我来答
左白楣0Hw
推荐于2016-08-20 · TA获得超过143个赞
知道答主
回答量:130
采纳率:75%
帮助的人:56.9万
展开全部
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴△BOC≌△ADC,∠OCD=60°,
∴CO=CD.
∴△COD是等边三角形;

(2)∵△ADC≌△BOC,
∴DA=OB=4,
∵△COD是等边三角形,
∴∠CDO=60°,又∠ADC=∠α=150°,
∴∠ADO=∠ADC-∠CDO=90°,
∴△AOD为直角三角形.
又AO=5,AD=4,∴OD=3,
∴CO=OD=3;

(3)若△AOD是等腰三角形,
所以分三种情况:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO,
∵∠AOB=110°,∠COD=60°,
∴∠BOC=360°-110°-60°-∠AOD=190°-∠AOD,
而∠BOC=∠ADC=∠ADO+∠CDO,
由①∠AOD=∠ADO可得∠BOC=∠AOD+60°,
求得α=125°;
由②∠ODA=∠OAD可得∠BOC=150°-
1
2
∠AOD
求得α=110°;
由③∠AOD=∠DAO可得∠BOC=240°-2∠AOD,
求得α=140°;
综上可知α=125°、α=110°或α=140°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式