如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(...
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?
展开
1个回答
展开全部
(1)四边形ACEF是平行四边形;
∵DE垂直平分BC,
∴D为BC的中点,ED⊥BC,
又∵AC⊥BC,
∴ED∥AC,
∴E为AB中点,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
∴BD=CD,
∴Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B=30°时,四边形ACEF为菱形;
理由:∵∠ACB=90°,∠B=30°,
∴AC=
AB,
由(1)知CE=
AB,∴AC=CE
又四边形ACEF为平行四边形
∴四边形ACEF为菱形;
(3)四边形ACEF不可能是正方形,
∵∠ACB=90°,
∴∠ACE<∠ACB,
即∠ACE<90°,不能为直角,
所以四边形ACEF不可能是正方形.
∵DE垂直平分BC,
∴D为BC的中点,ED⊥BC,
又∵AC⊥BC,
∴ED∥AC,
∴E为AB中点,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
∴BD=CD,
∴Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形;
(2)当∠B=30°时,四边形ACEF为菱形;
理由:∵∠ACB=90°,∠B=30°,
∴AC=
1 |
2 |
由(1)知CE=
1 |
2 |
又四边形ACEF为平行四边形
∴四边形ACEF为菱形;
(3)四边形ACEF不可能是正方形,
∵∠ACB=90°,
∴∠ACE<∠ACB,
即∠ACE<90°,不能为直角,
所以四边形ACEF不可能是正方形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询