如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的

如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。(1)连接AQ、CP交于点M,则在P... 如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形? (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数。 图1 图2 展开
 我来答
血刺代劳0w
推荐于2016-05-30 · 超过64用户采纳过TA的回答
知道答主
回答量:106
采纳率:0%
帮助的人:142万
展开全部
解:(1)∠CMQ=60°不变,
∵等边三角形中,AB=AC,∠B=∠CAP=60°
又由条件得AP=BQ,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;
(2)设时间为t,则AP=BQ=t,PB=4-t
①当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ,得4-t=2t,t=
②当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP,
得t=2(4-t),t=
∴当第 秒或第 秒时,△PBQ为直角三角形;
(3)∠CMQ=120°不变,
∵在等边三角形中,AB=AC,∠B=∠CAP=60°
∴∠PBC=∠ACQ=120°,
又由条件得BP=CQ,
∴△PBC≌△ACQ(SAS)
∴∠BPC=∠MQC
又∵∠PCB=∠MCQ,
∴∠CMQ=∠PBC=180°-60°=120°。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式