求一个单片机控制mos管的电路图
电路原理图:
单片机驱动mos管电路主要根据MOS管要驱动什么东西, 要只是一个继电器之类的小负载的话直接用51的引脚驱动就可以,要注意电感类负载要加保护二极管和吸收缓冲,最好用N沟道的MOS。
如果驱动的东西(功率)很大,(大电流、大电压的场合),最好要做电气隔离、过流超压保护、温度保护等~~ 此时既要隔离传送控制信号(例如PWM信号),也要给驱动级(MOS管的推动电路)传送电能。
常用的信号传送有PC923 PC929 6N137 TL521等 至于电能的传送可以用DC-DC模块。如果是做产品的话建议自己搞一个建议的DC-DC,这样可以降低成本。
扩展资料:
MOS管应用
1、低压应用
当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。同样的问题也发生在使用3V或者其他低压电源的场合。
2、宽电压应用
输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。
为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。
2024-07-18 广告
单片机驱动mos管电路主要根据MOS管要驱动什么东西, 要只是一个继电器之类的小负载的话直接用51的引脚驱动就可以,要注意电感类负载要加保护二极管和吸收缓冲,最好用N沟道的MOS。
如果驱动的东西(功率)很大,(大电流、大电压的场合),最好要做电气隔离、过流超压保护、温度保护等。此时既要隔离传送控制信号(例如PWM信号),也要给驱动级(MOS管的推动电路)传送电能。
常用的信号传送有PC923 PC929 6N137 TL521等 至于电能的传送可以用DC-DC模块。如果是做产品的话建议自己搞一个建议的DC-DC,这样可以降低成本。然后MOS管有一种简单的驱动方式:2SC1815+2SA1015,NPN与PNP一个用于MOS开启驱动,一个用于MOS快速关断。
扩展资料:
mos管主要参数
开启电压VT
开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;
标准的N沟道MOS管,VT约为3~6V;·通过工艺上的改进,可以使MOS管的VT值降到2~3V。
2. 直流输入电阻RGS
即在栅源极之间加的电压与栅极电流之比
这一特性有时以流过栅极的栅流表示
MOS管的RGS可以很容易地超过1010Ω。
3. 漏源击穿电压BVDS
在VGS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS
有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID
4. 栅源击穿电压BVGS
在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。
5. 低频跨导gm
在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导
gm反映了栅源电压对漏极电流的控制能力,是表征MOS管放大能力的一个重要参数
一般在十分之几至几mA/V的范围内
6. 导通电阻RON
导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数
在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间
由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似
对一般的MOS管而言,RON的数值在几百欧以内
7. 极间电容
三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS
CGS和CGD约为1~3pF,CDS约在0.1~1pF之间
8. 低频噪声系数NF
噪声是由管子内部载流子运动的不规则性所引起的。·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化
噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)。这个数值越小,代表管子所产生的噪声越小
低频噪声系数是在低频范围内测出的噪声系数
场效应管的噪声系数约为几个分贝,它比双极性三极管的要小
参考资料来源:百度百科-MOS管
protel给你画
可以吗
截图就行了
丘上说
2014-11-11
你给我的打不开啊,地址错误,麻烦你给我截图