用作差法证明a^a*b^b》a^b*b^a

帐号已注销
2012-05-19 · TA获得超过1.2万个赞
知道小有建树答主
回答量:1188
采纳率:0%
帮助的人:591万
展开全部
a^a*b^b>=a^b*b^a
a^a*b^b-a^b*b^a=(ab)^b[a^(a-b)-b^(a-b)]
假设a>=b,a^(a-b)-b^(a-b)>=0,所以
a^a*b^b-a^b*b^a>=0,即a^a*b^b>=a^b*b^a
假设a<b,a^(a-b)-b^(a-b)=(1/a)^(b-a)-(1/b)^(b-a)>=0,故
a^a*b^b-a^b*b^a>=0,即a^a*b^b>=a^b*b^a
综上所述,a^a*b^b>=a^b*b^a
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式