
∫x²arctanxdx=
2014-12-08 · 知道合伙人教育行家
关注

展开全部
∫ x²arctanx dx
= ∫ arctanx d(x³/3)
= (1/3)x³arctanx - (1/3)∫ x³ d(arctanx)
= (1/3)x³arctanx - (1/3)∫ x³/(1 + x²) dx
= (1/3)x³arctanx - (1/3)∫ x[(1 + x²) - 1]/(1 + x²) dx
= (1/3)x³arctanx - (1/3)∫ [x - x/(1 + x²)] dx
= (1/3)x³arctanx - (1/3)(x²/2) + (1/3)(1/2)ln(1 + x²) + C
= (1/3)x³arctanx - x²/6 + (1/6)ln(1 + x²) + C
= ∫ arctanx d(x³/3)
= (1/3)x³arctanx - (1/3)∫ x³ d(arctanx)
= (1/3)x³arctanx - (1/3)∫ x³/(1 + x²) dx
= (1/3)x³arctanx - (1/3)∫ x[(1 + x²) - 1]/(1 + x²) dx
= (1/3)x³arctanx - (1/3)∫ [x - x/(1 + x²)] dx
= (1/3)x³arctanx - (1/3)(x²/2) + (1/3)(1/2)ln(1 + x²) + C
= (1/3)x³arctanx - x²/6 + (1/6)ln(1 + x²) + C
追问
符号看不懂
追答
乱码178指平方
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |