有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=43.将这

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=43.将这副直角三角板按如图1所示位置摆放,点B... 有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=43.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围. 展开
 我来答
小费vc2
2014-11-15 · TA获得超过100个赞
知道答主
回答量:116
采纳率:50%
帮助的人:119万
展开全部
(1)如题图2所示,
∵在三角板DEF中,∠FDE=90°,DF=4,DE=4
3

∴tan∠DFE=
DE
DF
=
3
,∴∠DFE=60°,
∴∠EMC=∠FMB=∠DFE-∠ABC=60°-45°=15°;

(2)如题图3所示,当EF经过点C时,
FC=
AC
sin∠AFC
=
6
sin60°
=
6
3
2
=4
3


(3)在三角板DEF运动过程中,
(I)当0≤x≤2时,如答图1所示:

设DE交BC于点G.
过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.
又∵NF=
MN
tan60°
=
3
3
MN,BN=NF+BF,
∴NF+BF=MN,即
3
3
MN+x=MN,解得:MN=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消