已知数列{an}中,a1=1,且对于任意正整数n都有an+1/an=(n+2)/n,求an
2个回答
2012-05-19 · 知道合伙人教育行家
关注
展开全部
用累乘法。
an=[an/a(n-1)]*[a(n-1)/a(n-2)]*.....*(a2/a1)*a1
=(n+1)/(n-1)*n/(n-2)*......*4/2*3/1*1
=n(n+1)/2 。
an=[an/a(n-1)]*[a(n-1)/a(n-2)]*.....*(a2/a1)*a1
=(n+1)/(n-1)*n/(n-2)*......*4/2*3/1*1
=n(n+1)/2 。
追问
累乘的时候不会约分囧
追答
是隔两项约分,所以分子前面剩两项,分母后面剩两项。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询