(2014?玉林)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶
(2014?玉林)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若...
(2014?玉林)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线l′,则无论非零实数k取何值,直线l′与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.
展开
1个回答
展开全部
(1)解:∵l:y=kx,C:y=ax2+bx+1,当b=1时有A,B两交点,
∴A,B两点的横坐标满足kx=ax2+x+1,即ax2+(1-k)x+1=0.
∵B与A关于原点对称,
∴0=xA+xB=
,
∴k=1.
∵y=ax2+x+1=a(x+
)2+1-
,
∴顶点(-
,1-
)在y=x上,
∴-
=1-
,
解得 a=-
.
(2)①解:∵无论非零实数k取何值,直线l′与抛物线C都只有一个交点,
∴k=1时,k=2时,直线l′与抛物线C都只有一个交点.
当k=1时,l′:y=x+2,
∴代入C:y=ax2+bx+1中,有ax2+(b-1)x-1=0,
∵△=(b-1)2+4a=0,
∴(b-1)2+4a=0,
当k=2时,l′:y=2x+5,
∴代入C:y=ax2+bx+1中,有ax2+(b-2)x-4=0,
∵△=(b-2)2+16a=0,
∴(b-2)2+16a=0,
∴联立得关于a,b的方程组
,
解得
或
∴A,B两点的横坐标满足kx=ax2+x+1,即ax2+(1-k)x+1=0.
∵B与A关于原点对称,
∴0=xA+xB=
k?1 |
a |
∴k=1.
∵y=ax2+x+1=a(x+
1 |
2a |
1 |
4a |
∴顶点(-
1 |
2a |
1 |
4a |
∴-
1 |
2a |
1 |
4a |
解得 a=-
1 |
4 |
(2)①解:∵无论非零实数k取何值,直线l′与抛物线C都只有一个交点,
∴k=1时,k=2时,直线l′与抛物线C都只有一个交点.
当k=1时,l′:y=x+2,
∴代入C:y=ax2+bx+1中,有ax2+(b-1)x-1=0,
∵△=(b-1)2+4a=0,
∴(b-1)2+4a=0,
当k=2时,l′:y=2x+5,
∴代入C:y=ax2+bx+1中,有ax2+(b-2)x-4=0,
∵△=(b-2)2+16a=0,
∴(b-2)2+16a=0,
∴联立得关于a,b的方程组
|
解得
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|