一元二次方程的方程无解和方程无实数根有什么区别

 我来答
风中的纸屑866
推荐于2016-12-02 · 公务员
风中的纸屑866
采纳数:15372 获赞数:52130

向TA提问 私信TA
展开全部
解析:
对于一元二次方程而言:
在实数范围内:无实数解即无解

但在非实数范围内,无实数解≠无解

如:x^2 =-1,在实数范围内无解,但在非实数范围内,其解是x=i

结论,在实数范围内,无解=无实数解

保证质量,欢迎追问
叶早早回扉0
推荐于2018-09-10 · TA获得超过2.5万个赞
知道大有可为答主
回答量:5625
采纳率:92%
帮助的人:523万
展开全部
解析:
对于一元二次方程而言:
在实数范围内:无实数解即无解
但在非实数范围内,无实数解≠无解
如:x^2 =-1,在实数范围内无解,但在非实数范围内,其解是x=i
结论,在实数范围内,无解=无实数解
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shawshark12100
2015-04-07 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2.9万
采纳率:76%
帮助的人:7632万
展开全部
没区别。



其实前一种确切点的说法是在实数范围内无解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
却恬然h1
2020-08-12
知道答主
回答量:50
采纳率:0%
帮助的人:2.8万
展开全部
查看全部4个回答
我来答有奖励
写回答有奖励查看全部4个回答

风中的纸屑866
知道合伙人教育行家2016-12-02

关注
解析:
对于一元二次方程而言:
在实数范围内:无实数解即无解
但在非实数范围内,无实数解≠无解
如:x^2 =-1,在实数范围内无解,但在非实数范围内,其解是x=i
结论,在实数范围内,无解=无实数解
保证质量,欢迎追问
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mind_Ofghhccdr
2019-02-25
知道答主
回答量:1
采纳率:0%
帮助的人:777
展开全部
解析:
对于一元二次方程而言:
在实数范围内:无实数解即无解
但在非实数范围内,无实数解≠无解
如:x^2 =-1,在实数范围内无解,但在非实数范围内,其解是x=i
结论,在实数范围内,无解=无实数解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式