矩阵的n次方后的行列式与矩阵行列式后的n次方相等吗?如果相等,给出证明。 20

 我来答
Dilraba学长
高粉答主

2019-05-26 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411029

向TA提问 私信TA
展开全部

相等。

因为|AB|=|A|*|B|

所以

|A^n|=|A*A***A|=|A|*|A|***|A|=|A|^n

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

扩展资料

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

坏脾气976
2018-10-14 · TA获得超过2014个赞
知道小有建树答主
回答量:431
采纳率:100%
帮助的人:123万
展开全部
相等。
因为|AB|=|A|*|B|
所以
|A^n|=|A*A***A|=|A|*|A|***|A|=|A|^n
扩展资料:
1、矩阵的行列式定义
矩阵的行列式,determinate,是基于矩阵所包含的行列数据计算得到的一个标量;
二维矩阵[{a,c},{b,d}]的行列式等于:det(A) = ab-cd。

2、n维矩阵的行列式
假设矩阵A为n维的方阵,定义Aij为从A中删除第i行、第j列之后剩下的n-1维方阵。
可以沿着A的第一行来求取行列式:det(A) = a11*A11-a12*A12+...+a1n*A1n,这是一个递归的定义,包含n项,每一项的正负号等于 (-1)的(i+j)次方。
实际上可以对A的任意一行、任意一列按上面的方法来求取行列式,可以挑选包含0比较多得行(列)。

3、矩阵标量乘法的行列式
当矩阵的某一行(列)与标量相乘时,det(A') = k*det(A);
当矩阵与标量相乘时,det(kA) = k的n次方 * det(A)。

4、矩阵行列式的一些规律
1)如果矩阵A= {r1,r2,...ri...,rn} B={r1,r2,...ri',...rn} C={r1,r2,...ri+ri',...rn},则有det(C) = det(A)+det(B)
2)如果矩阵A有两行(列)相等则,det(A) = 0
3)如果矩阵A将两行交换后得到矩阵B,则有det(A)=-det(B)
4)如果矩阵A进行行变换后得到矩阵B,则有det(A)=det(B);可以通过行变换达到3)的效果,这个过程中会发生-1数乘某行。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友5f0c6fd
推荐于2017-05-17 · TA获得超过2823个赞
知道小有建树答主
回答量:1005
采纳率:100%
帮助的人:521万
展开全部
相等。
因为有结论: |AB|=|A|*|B|
所以 |A^n|=|A*A***A|=|A|*|A|***|A|=|A|^n
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式