3个回答
展开全部
解:
f(x)=1+2(√3)sinxcosx+2(cosx)^2
f(x)=2(√3)sinxcosx-[1-2(cosx)^2]+2
f(x)=(√3)sin2x-cos2x+2
f(x)=2{[(√3)/2]sin2x-(1/2)cos2x}+2
f(x)=2[sin(π/3)sin2x-cos(π/3)cos2x]+2
f(x)=2cos(2x+π/3)+2
1、最小正周期:
2π/2=π
2、单调减区间:
f(x)=2cos(2x+π/3)+2
f'(x)=-4sin(2x+π/3)
令:f'(x)<0,即:-4sin(2x+π/3)<0
整理,有:sin(2x+π/3)>0
解得:kπ+π/3>x>kπ-π/6,k=0、±1、±2、±3……
即:f(x)的单调减区间是:x∈(kπ-π/6,kπ+π/3) ,k=0、±1、±2、±3……
f(x)=1+2(√3)sinxcosx+2(cosx)^2
f(x)=2(√3)sinxcosx-[1-2(cosx)^2]+2
f(x)=(√3)sin2x-cos2x+2
f(x)=2{[(√3)/2]sin2x-(1/2)cos2x}+2
f(x)=2[sin(π/3)sin2x-cos(π/3)cos2x]+2
f(x)=2cos(2x+π/3)+2
1、最小正周期:
2π/2=π
2、单调减区间:
f(x)=2cos(2x+π/3)+2
f'(x)=-4sin(2x+π/3)
令:f'(x)<0,即:-4sin(2x+π/3)<0
整理,有:sin(2x+π/3)>0
解得:kπ+π/3>x>kπ-π/6,k=0、±1、±2、±3……
即:f(x)的单调减区间是:x∈(kπ-π/6,kπ+π/3) ,k=0、±1、±2、±3……
展开全部
解:(1)f(x)=1+2√3sinxcosx+2cos^2x=2+√3sin2x+cos2x=2+2sin(2x+π/6),所以最小正周期为π;
(2)因为正弦函数在[2kπ+π/2,2kπ+3π/2](k为整数)上单调递减,
所以2kπ+π/2<2x+π/6<2kπ+3π/2,所以kπ+π/6<x<kπ+2π/3,
所以函数f(x)的单调减区间为[kπ+π/6,kπ+2π/3]
(2)因为正弦函数在[2kπ+π/2,2kπ+3π/2](k为整数)上单调递减,
所以2kπ+π/2<2x+π/6<2kπ+3π/2,所以kπ+π/6<x<kπ+2π/3,
所以函数f(x)的单调减区间为[kπ+π/6,kπ+2π/3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=2+√3sin2x+cos2x=2sin(2x+π/6)+21、增区间:2kπ-π/2≤2x+π/6≤2kπ+π/2kπ-π/3≤x≤kπ+π/6则:增区间是:[kπ-π/3,kπ+π/6],其中k是整数2、f(a)=2sin(2a+π/6)+2=3,得:sin(2a+π/6)=1/2,2a+π/6=5π/6,得:a=π/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询