
求数列1/(1*3),1/(2*4),1/(3*5),...,1/[n(n+2)],...的前n项和S
2个回答
展开全部
楼主你好!
1/(1*3)+1/(2*4)+1/(3*5)+...+1/[n(n+2)]=1/(3-1) *(1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/n-1/(n+2)=1/2 *(1/1+1/2-1/(n+1)-1/(n+2))=(3n^2+7n+3)/(4n^2+12n+8)
1/(1*3)+1/(2*4)+1/(3*5)+...+1/[n(n+2)]=1/(3-1) *(1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/n-1/(n+2)=1/2 *(1/1+1/2-1/(n+1)-1/(n+2))=(3n^2+7n+3)/(4n^2+12n+8)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询