这道四则运算题怎么做,是不是有简便方法?
2个回答
展开全部
奥数题,给你解法.给原式乘以(2-1/2),再除以(2-1/2).从而反复用平方差公式。
原式=(2-1/2)(2+1/2)(2²+1/2²)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2²-1/2²)(2²+1/2²)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^4-1/2^4)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^8-1/2^8)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^16-1/2^16)(2^16+1/2^16)/(2-1/2)
=(2^32-1/2^32)/(2-1/2)
=(2^32-1/2^32)x(2/3)
=(2^33-1/2^31)x(1/3)
原式=(2-1/2)(2+1/2)(2²+1/2²)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2²-1/2²)(2²+1/2²)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^4-1/2^4)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^8-1/2^8)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^16-1/2^16)(2^16+1/2^16)/(2-1/2)
=(2^32-1/2^32)/(2-1/2)
=(2^32-1/2^32)x(2/3)
=(2^33-1/2^31)x(1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2+1/2)(2^2+1/2^)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)
=(2-1/2)(2+1/2)(2^2+1/2^)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^2-1/2^2)(2^2+1/2^)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)*2/3
=(2^4-1/2^4)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)*2/3
=(2^8-1/2^8)(2^8+1/2^8)(2^16+1/2^16)*2/3
=(2^16-1/2^16)(2^16+1/2^16)*2/3
=2/3*(2^32-1/2^32)
=(2-1/2)(2+1/2)(2^2+1/2^)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)/(2-1/2)
=(2^2-1/2^2)(2^2+1/2^)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)*2/3
=(2^4-1/2^4)(2^4+1/2^4)(2^8+1/2^8)(2^16+1/2^16)*2/3
=(2^8-1/2^8)(2^8+1/2^8)(2^16+1/2^16)*2/3
=(2^16-1/2^16)(2^16+1/2^16)*2/3
=2/3*(2^32-1/2^32)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询