求解不定积分题目,题目如下图,有三道,谢谢了!
展开全部
三个这个难度的题,悬赏10分有些低了。
1、令arcsinx=u,则x=sinu,dx=cosudu,√(1-x²)=cosu
原式=∫ (sinu*e^u/cosu) *cosudu
=∫ sinu*e^u du
下面计算:
∫ sinu*e^u du
=∫ sinu d(e^u)
=e^u*sinu-∫ e^u*cosu du
=e^u*sinu-∫ cosu d(e^u)
=e^u*sinu-e^u*cosu-∫ e^u*sinu du
将-∫ e^u*sinu du移到左边与左边合并后除去系数得:
∫ sinu*e^u du=(1/2)e^u*sinu-(1/2)e^u*cosu+C
=(1/2)xe^(arcsinx)-(1/2)√(1-x²)*e^(arcsinx)+C
2、令x^(1/6)=u,则x=u^6,dx=6u^5du,x^(1/2)=u^3,x^(2/3)=u^4
原式=∫ [u^3/(u^4-u^3)] *6u^5du
=6∫ u^5/(u-1)du
=6∫ (u^5-1+1)/(u-1)du
=6∫ (u^5-1)/(u-1)du+6∫ 1/(u-1)du
=6∫ (u^4+u³+u²+u+1)du+6∫ 1/(u-1)du
=(6/5)u^5+(3/2)u^4+2u³+3u²+6u+6ln|u-1|+C
然后将u换回x^(1/6)即可
3、令x=tanu,则√(x²+1)=secu,dx=sec²udu
原式=∫ 1/[(tanu)^4*secu] *sec²udu
=∫ secu/(tanu)^4du
=∫ (cosu)^5/(sinu)^4 du
=∫ (cosu)^4/(sinu)^4 d(sinu)
=∫ (1-sin²u)²/(sinu)^4 d(sinu)
=∫ (1-2sin²u+(sinu)^4)/(sinu)^4 d(sinu)
=-(1/3)(sinu)^(-3)+2/sinu+sinu+C
由x=tanu,得:sinu=x/√(x²+1)
将sinu=x/√(x²+1)代回
1、令arcsinx=u,则x=sinu,dx=cosudu,√(1-x²)=cosu
原式=∫ (sinu*e^u/cosu) *cosudu
=∫ sinu*e^u du
下面计算:
∫ sinu*e^u du
=∫ sinu d(e^u)
=e^u*sinu-∫ e^u*cosu du
=e^u*sinu-∫ cosu d(e^u)
=e^u*sinu-e^u*cosu-∫ e^u*sinu du
将-∫ e^u*sinu du移到左边与左边合并后除去系数得:
∫ sinu*e^u du=(1/2)e^u*sinu-(1/2)e^u*cosu+C
=(1/2)xe^(arcsinx)-(1/2)√(1-x²)*e^(arcsinx)+C
2、令x^(1/6)=u,则x=u^6,dx=6u^5du,x^(1/2)=u^3,x^(2/3)=u^4
原式=∫ [u^3/(u^4-u^3)] *6u^5du
=6∫ u^5/(u-1)du
=6∫ (u^5-1+1)/(u-1)du
=6∫ (u^5-1)/(u-1)du+6∫ 1/(u-1)du
=6∫ (u^4+u³+u²+u+1)du+6∫ 1/(u-1)du
=(6/5)u^5+(3/2)u^4+2u³+3u²+6u+6ln|u-1|+C
然后将u换回x^(1/6)即可
3、令x=tanu,则√(x²+1)=secu,dx=sec²udu
原式=∫ 1/[(tanu)^4*secu] *sec²udu
=∫ secu/(tanu)^4du
=∫ (cosu)^5/(sinu)^4 du
=∫ (cosu)^4/(sinu)^4 d(sinu)
=∫ (1-sin²u)²/(sinu)^4 d(sinu)
=∫ (1-2sin²u+(sinu)^4)/(sinu)^4 d(sinu)
=-(1/3)(sinu)^(-3)+2/sinu+sinu+C
由x=tanu,得:sinu=x/√(x²+1)
将sinu=x/√(x²+1)代回
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询