展开全部
1、证明:
∵等边△ABC
∴BC=AC,∠C=60
∵等边△CDE
∴CE=CD
∴AD=AC-CD,BE=BC-CE
∵P是AD的中点
∴PD=(AC-CD)/2
∴CP=CD+PD=(AC+CD)/2
同理可得:CQ=(BC+CE)/2
∴CP=CQ
∴等边△CPQ
2、
∵等边△ABC
∴BC=AC,∠ACB=60
∵等边△CDE
∴CE=CD,∠DCE=60
∵∠ACD=∠DCE-∠ACE,∠BCE=∠ACB-∠ACE
∴∠ACD=∠BCE
∴△ACD≌△BCE (SAS)
∴AD=BE,∠CBE=∠CAD
∵P是AD的中点,Q是BE的中点
∴AP=AD/2,BQ=BE/2
∴AP=BQ
∴△ACP≌△BCQ (SAS)
∴PC=QC,∠BCQ=∠ACP
∵∠BCQ+∠ACQ=∠ACB=60
∴∠ACP+∠ACQ=60
∴∠PCQ=60
∴等边△CPQ
不要好评我更喜欢高悬赏O(∩_∩)O~
追问
额嗯,谢谢你啦
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询