2个回答
展开全部
解:过D作EF⊥l1,交l1于E,交l4于F,
∵EF⊥l1,l1∥l2∥l3∥l4,
∴EF和l2,l3,l4的夹角都是90°,
即EF与l2,l3,l4都垂直,
∴DE=1,DF=2.
∵四边形ABCD是正方形,
∴∠ADC=90°,AD=CD,
∴∠ADE+∠CDF=90°,
又∵∠α+∠ADE=90°,
∴∠α=∠CDF,
∵AD=CD,∠AED=∠DFC=90°,
∴△ADE≌△DFC,
∴DE=CF=1,
∴在Rt△CDF中,CD==根号5
∴sinα=sin∠CDF===5分之根号5
∵EF⊥l1,l1∥l2∥l3∥l4,
∴EF和l2,l3,l4的夹角都是90°,
即EF与l2,l3,l4都垂直,
∴DE=1,DF=2.
∵四边形ABCD是正方形,
∴∠ADC=90°,AD=CD,
∴∠ADE+∠CDF=90°,
又∵∠α+∠ADE=90°,
∴∠α=∠CDF,
∵AD=CD,∠AED=∠DFC=90°,
∴△ADE≌△DFC,
∴DE=CF=1,
∴在Rt△CDF中,CD==根号5
∴sinα=sin∠CDF===5分之根号5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询