对坐标的曲线积分的奇偶性是遵循偶零奇倍还是偶倍奇零?
1个回答
展开全部
你这个问的还是关于对称性的问题,我都给你说了吧:
对于积分为零的一些结论:
首先,说些题外的:只有第一类曲线积分,第一类曲面积分,定积分,二重积分,三重积分可以运用积分的对称性,
记住一句话:对称看所给范围,奇偶看积分函数式……
对于二重积分,
要是所给D范围为关于x轴对称,若积分函数式关于y为奇函数,则积分值为零
对于三重积分:
所给的空间区域关于xoy面对称,若积分函数关于z为奇函数,则积分值为零
对于第一类曲线积分:
要是曲线关于x/y轴对称,而积分式子是关于y / x的奇函数,则运用对称性,积分为零了……
对于第一类曲面积分:
要是给定的曲面关于xoy面对称,而积分式子是关于z的奇函数,则运用对称性,积分为零了,对与关于其他面的对称,就看看积分式子是否是关于垂直于对称面的坐标轴的奇函数就可以了……
对于第二类曲线积分,则转化为定积分,对称性和定积分一样,对于第二类曲面积分,则转化为二重积分,对称性和二重积分一样……
所以闭曲面的曲面积分不一定为0,至于什么时候为0,利用对称性就能判断了
对于积分为零的一些结论:
首先,说些题外的:只有第一类曲线积分,第一类曲面积分,定积分,二重积分,三重积分可以运用积分的对称性,
记住一句话:对称看所给范围,奇偶看积分函数式……
对于二重积分,
要是所给D范围为关于x轴对称,若积分函数式关于y为奇函数,则积分值为零
对于三重积分:
所给的空间区域关于xoy面对称,若积分函数关于z为奇函数,则积分值为零
对于第一类曲线积分:
要是曲线关于x/y轴对称,而积分式子是关于y / x的奇函数,则运用对称性,积分为零了……
对于第一类曲面积分:
要是给定的曲面关于xoy面对称,而积分式子是关于z的奇函数,则运用对称性,积分为零了,对与关于其他面的对称,就看看积分式子是否是关于垂直于对称面的坐标轴的奇函数就可以了……
对于第二类曲线积分,则转化为定积分,对称性和定积分一样,对于第二类曲面积分,则转化为二重积分,对称性和二重积分一样……
所以闭曲面的曲面积分不一定为0,至于什么时候为0,利用对称性就能判断了
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
继电保护定值计算是指根据电力系统的参数和电力设备的特性,计算和确定继电保护装置的动作值和动作范围。这些动作值和范围包括过电流保护、过负荷保护、低电压保护、接地保护等。继电保护定值计算通常需要考虑以下因素:1. 电力系统的参数,如电压等级、线...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询