计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

丘冷萱Ad
2012-05-21 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3970万
展开全部
dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)
dS=√[1+(dz/dx)²+(dz/dy)²] dxdy=2/√(4-x²-y²) dxdy
∫∫ (x²+y²) dS
=2∫∫ (x²+y²)/√(4-x²-y²) dxdy
极坐标
=2∫∫ r²/√(4-r²) *rdrdθ
=2∫[0→2π]dθ∫[0→2] r³/√(4-r²) dr
=4π∫[0→2] [r²/√(4-r²)] *rdr
换元,令√(4-r²)=u,则r²=4-u²,两边微分,rdr=-udu,u:2→0
=-4π∫[2→0] [(4-u²)/u] *udu
=4π∫[0→2] (4-u²)du
=4π(4u-(1/3)u³) |[0→2]
=32π-32π/3
=64π/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式