
高等数学微积分,第25题,接下来要怎么做?
2个回答
展开全部
25 令 x^(1/6) = u, 则 x = u^6, dx = 6u^5du
I = ∫ 6u^5du/(u^3+u^2) = 6 ∫ u^3du/(u+1)
= 6 ∫ (u^3+1-1)du/(u+1)
= 6 ∫ [u^2-u+1+1/(u+1)]du
= 2u^3 - 3U^2 + 6u + ln(u+1) + C
= 2√x - 3x^(1/3) + 6x^(1/6) + ln(1+x^(1/6)] + C
I = ∫ 6u^5du/(u^3+u^2) = 6 ∫ u^3du/(u+1)
= 6 ∫ (u^3+1-1)du/(u+1)
= 6 ∫ [u^2-u+1+1/(u+1)]du
= 2u^3 - 3U^2 + 6u + ln(u+1) + C
= 2√x - 3x^(1/3) + 6x^(1/6) + ln(1+x^(1/6)] + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询