在三角形ABC中,AB=2根号5,AC=4,BC=2,以AB为边做等腰直角三角形,求CD长(三种情况)
1个回答
展开全部
(1)当AB为斜边时,BD=根号10,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)或
CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC-45°)解得CD=根号2或3根号2
(2)当AB为直角边时,BD=2根号5,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+90°)或CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC-90°)解得CD=2根号2或2根号10
(3)当AB为直角边时,BD=2根号10,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)或CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)解得CD=2根号13或2根号10
CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC-45°)解得CD=根号2或3根号2
(2)当AB为直角边时,BD=2根号5,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+90°)或CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC-90°)解得CD=2根号2或2根号10
(3)当AB为直角边时,BD=2根号10,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)或CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)解得CD=2根号13或2根号10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询