设向量a=(4,-1,1),b=(1,2,-2),向量c满足a=b×c,则|c|的最小值为_____________.
展开全部
let c (x,y,z)
a=bxc
(4,-1,1) = (1,2,-2)x(x,y,z)
=(2z+2y,-z-2x,y-2x)
=>
2z+2y=4 (1) and
-z-2x = -1 (2) and
y-2x=1 (3)
from (3) y=1+2x
from (2) z=1-2x
|c|^2 =x^2+y^2+z^2
=x^2+(1+2x)^2+(1-2x)^2
(|c|^2)' =2x + 4(1+2x)-4(1-2x)=0
2x+4+8x-4+8x=0
x=0
(|c|^2)''=2+8+8 >0 (min)
min |c|^2 at x=0
min|c|^2= 0+(1)^2+(1)^2=2
min|c|=√2
a=bxc
(4,-1,1) = (1,2,-2)x(x,y,z)
=(2z+2y,-z-2x,y-2x)
=>
2z+2y=4 (1) and
-z-2x = -1 (2) and
y-2x=1 (3)
from (3) y=1+2x
from (2) z=1-2x
|c|^2 =x^2+y^2+z^2
=x^2+(1+2x)^2+(1-2x)^2
(|c|^2)' =2x + 4(1+2x)-4(1-2x)=0
2x+4+8x-4+8x=0
x=0
(|c|^2)''=2+8+8 >0 (min)
min |c|^2 at x=0
min|c|^2= 0+(1)^2+(1)^2=2
min|c|=√2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询