如图,在矩形ABCD中,p是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q (1)求证:OP=OQ
如图,在矩形ABCD中,p是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q(1)求证:OP=OQ:(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/...
如图,在矩形ABCD中,p是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q (1)求证:OP=OQ:
(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向D运动(不与D重合)。设点P运动的时间为ts,请用t表示PD的长,并求当t为何值时,四边形PBQD是菱形 (速度回答啊急急急啊!!!!!!!!!!!!!!!) 展开
(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向D运动(不与D重合)。设点P运动的时间为ts,请用t表示PD的长,并求当t为何值时,四边形PBQD是菱形 (速度回答啊急急急啊!!!!!!!!!!!!!!!) 展开
10个回答
展开全部
1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB,
∴△POD≌△QOB,
∴OP=OQ;
(2)解:PD=8-t,
∵四边形PBQD是菱形,
∴PD=BP=8-t,
∵四边形ABCD是矩形,
∴∠A=90°,
在Rt△ABP中,由勾股定理得:AB^2+AP^2=BP^2,
即6^2+t^2=(8-t)^2,
解得:t=7/ 4 ,
即运动时间为7/ 4 秒时,四边形PBQD是菱形.
∴AD∥BC,
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB,
∴△POD≌△QOB,
∴OP=OQ;
(2)解:PD=8-t,
∵四边形PBQD是菱形,
∴PD=BP=8-t,
∵四边形ABCD是矩形,
∴∠A=90°,
在Rt△ABP中,由勾股定理得:AB^2+AP^2=BP^2,
即6^2+t^2=(8-t)^2,
解得:t=7/ 4 ,
即运动时间为7/ 4 秒时,四边形PBQD是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
)证明:∵四边形ABCD是矩形,
∴AD∥BC
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB
∴△POD≌△QOB
∴OP=OQ
解法一(2)PD=8-t
∵四边形ABCD是矩形,
∴∠A=90°,
∵AD=8cm,AB=6cm,
∴BD=10cm,
∴OD=5cm.
若四边形PBQD是菱形时,
即PQ⊥BD,
∴∠POD=∠A,
又∵∠ODP=∠ADB∴△ODP∽△ADB,
∴ OD/PD=AD/BD,即 5/(8-t)=8/10,
∴t=7/4
∴运动时间为 7/4秒时
∴四边形PBQD是菱形.欢迎采纳啦😄
∴AD∥BC
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB
∴△POD≌△QOB
∴OP=OQ
解法一(2)PD=8-t
∵四边形ABCD是矩形,
∴∠A=90°,
∵AD=8cm,AB=6cm,
∴BD=10cm,
∴OD=5cm.
若四边形PBQD是菱形时,
即PQ⊥BD,
∴∠POD=∠A,
又∵∠ODP=∠ADB∴△ODP∽△ADB,
∴ OD/PD=AD/BD,即 5/(8-t)=8/10,
∴t=7/4
∴运动时间为 7/4秒时
∴四边形PBQD是菱形.欢迎采纳啦😄
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,
∵O为BD中点,
∴OB=OD,
∵在△PDO和△QBO中
∠PDO=∠QBOOB=OD∠POD=∠BOQ,
∴△PDO≌△BQO(ASA),
∴OP=OQ.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询