在三角形ABC中,A,B,C的对边分别为a,b,c.且acosC,bcosB,ccosA.成等差数列。求(1)B的值。(2)求2sin^2A+c...
在三角形ABC中,A,B,C的对边分别为a,b,c.且acosC,bcosB,ccosA.成等差数列。求(1)B的值。(2)求2sin^2A+cos(A-C)的范围...
在三角形ABC中,A,B,C的对边分别为a,b,c.且acosC,bcosB,ccosA.成等差数列。求(1)B的值。(2)求2sin^2A+cos(A-C)的范围
展开
展开全部
acosC,bcosB,ccosA成等差数列
2bcosB=acosC+ccosA.
根据正弦定理得
a/sinA=b/sinB=c/sinC=k
a=ksinA,b=ksinB,c=ksinC
代入上式得
2ksinBcosB=ksinAcosC+ksinCcosA
sin2B=sin(A+C)=sinB
B=60°
2sin^2A+cos(A-C)
=2sin^2A+cos[A-(120-A)]
=2sin^2A+cos(2A-120)
=1-cos2A+cos(2A-120)
=1+2sin(2A-60)sin60
=1+√3sin(2A-60)
由于0<2A<120
所以-√3/2<sin(2A-60)<1
1-√3/2<2sin^2A+cos(A-C)<2
2bcosB=acosC+ccosA.
根据正弦定理得
a/sinA=b/sinB=c/sinC=k
a=ksinA,b=ksinB,c=ksinC
代入上式得
2ksinBcosB=ksinAcosC+ksinCcosA
sin2B=sin(A+C)=sinB
B=60°
2sin^2A+cos(A-C)
=2sin^2A+cos[A-(120-A)]
=2sin^2A+cos(2A-120)
=1-cos2A+cos(2A-120)
=1+2sin(2A-60)sin60
=1+√3sin(2A-60)
由于0<2A<120
所以-√3/2<sin(2A-60)<1
1-√3/2<2sin^2A+cos(A-C)<2
展开全部
acosC+ccosA=2bcosB
∴sinAcosC+sinCcosA=2sinBcosB
∴sin(A+C)=2sinBcosB
即sinB=2sinBcosB
∵sinB≠0,∴cosB=1/2
∴B=120°
2sin²A+cos(A-C)
=1-cos2A+cos(2A-120°)
=1-cos2A-1/2cos2A+√3/2sin2A
=√3/2sin2A-3/2cos2A+1
=√3sin(2A-π/3)+1
∵0<A<π/3
∴-π/3<2A-π/3<π/3
∴所求范围是(1/2,3/2)
∴sinAcosC+sinCcosA=2sinBcosB
∴sin(A+C)=2sinBcosB
即sinB=2sinBcosB
∵sinB≠0,∴cosB=1/2
∴B=120°
2sin²A+cos(A-C)
=1-cos2A+cos(2A-120°)
=1-cos2A-1/2cos2A+√3/2sin2A
=√3/2sin2A-3/2cos2A+1
=√3sin(2A-π/3)+1
∵0<A<π/3
∴-π/3<2A-π/3<π/3
∴所求范围是(1/2,3/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1) 2bcosB=acosC+ccosA
由正弦定理得2sinBcosB=sinAcosC+sinCcosA
∴2sinBcosB=sin(A+C)
∴2sinBcosB=sinB
∴cosB=1/2
∴B=60度
(2)
2sin²A+cos(A-C)
=1-cos2A+cos(2A-120)
=1-2sin(2A-60)sin(-60)
=1+2sin60sin(2A-60)
∵B=60度
∴A∈(0,120)
∴2A-60∈(-60,180)
∴sin(2A-60)∈(-sin60,1]
(将sin60的值代入)(A=75时,原式为1)
∴原式的范围是(-1/2,1+根号3〕
由正弦定理得2sinBcosB=sinAcosC+sinCcosA
∴2sinBcosB=sin(A+C)
∴2sinBcosB=sinB
∴cosB=1/2
∴B=60度
(2)
2sin²A+cos(A-C)
=1-cos2A+cos(2A-120)
=1-2sin(2A-60)sin(-60)
=1+2sin60sin(2A-60)
∵B=60度
∴A∈(0,120)
∴2A-60∈(-60,180)
∴sin(2A-60)∈(-sin60,1]
(将sin60的值代入)(A=75时,原式为1)
∴原式的范围是(-1/2,1+根号3〕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询