若实数x,y满足x^2+y^2+xy=1,则x+y的最大值是多少?
2个回答
展开全部
三角换元法,根据三角函数的有界性求出范围
x^2+y^2+xy=(x+y/2)^2+(3/4)*y^2=1
令x+y/2=cosθ ,(√ 3/2)y=sinθ
∴x+y=cosθ+(√ 3/3)sinθ=(2√3/3)sin(θ+π/3),
∴(x+y)max=2√3/3
x^2+y^2+xy=(x+y/2)^2+(3/4)*y^2=1
令x+y/2=cosθ ,(√ 3/2)y=sinθ
∴x+y=cosθ+(√ 3/3)sinθ=(2√3/3)sin(θ+π/3),
∴(x+y)max=2√3/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询