已知双曲线x^2-y^2/2=1的焦点为F1,F2,点M在双曲线上,且向量MF1*MF2=0,则点M到x轴的距离为

为什么用焦半径方程求出的答案不对,MF1=ex0-aMF2=ex0+a则(ex0-a)^2+(ex0+a)^2=4c^2求出x0^2=5/3求解释... 为什么用焦半径方程求出的答案不对, MF1=ex0-a MF2=ex0+a 则(ex0-a)^2+(ex0+a)^2=4c^2 求出x0^2=5/3 求解释 展开
看涆余
2012-05-23 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4307万
展开全部
x0^2=5/3,没有错,是求M至X轴的距离,是求Y坐标,不是X坐标值,x0=±√15/3,
设MH是RT△MF1F2斜边上的高,
则MH^2=|F1*H|*|HF2|,(RT△斜边上的高是其分斜边两线段的比例中项),
这里设x0>0,
|F1H|=c+x0,
|HF2|=c-x0,
a=1,b=√2,
c=√(1+2)=√3,
|HM|=√[(c+x0)(x-x0)]=√(c^2-x0^2)=√(3-5/3)=2√3/3,
∴点M到x轴的距离为2√3/3。
若不用焦半径作,可利用双曲线定义来作,
设|MF1|=m,|MF2|=n,
∵向量MF1*MF2=0,
∴MF1⊥MF2,
∴△MF1F2是RT△,
|F1F2|=2c,
m^2+n^2=4c^2,(1)
|m-n|=2a,
两边平方,
m^2+n^2-2mn=4a^2,(2)
(1)-(2)式,
2mn=4(c^2-a^2)=4b^2,
mn=2b^2,
利用三角形面积等值原理,
mn=|F1F2|*|HM|,
2b^2=2c*|HM|,
∴|HM|=b^2/c=2/√3=2√3/3。
匿名用户
2013-01-11
展开全部
额读大三大四的的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式