如图,在平面直角坐标系中,点p从原点出发,沿x轴向右以每秒2个单位长度的速度运动t(t》0)
展开全部
解:(1)把x=0,y=0代入y=-x2+bx+c中,得c=0,
再把x=2t,y=0代入y=-x2+bx中,得b=2t
故抛物线的解析式为y=-x2+2tx.
(2)∵t>0,
∴在点P和矩形ABCD开始运动时就经过矩形区域ABCD,
当抛物线经过点A时,将A(t+4,9)代入y=-x2+2tx中,得-(t+4)2+2t(t+4)=9,
整理,解方程得:t1=-5(舍去),t2=5,
即可得当t>5时,抛物线不在经过矩形区域ABCD,
综上可得t的范围为:0<t≤5,
(3)如图,当t=4秒时,此时点D和点P重合,抛物线的解析式为y=-x2+8x.
设直线MP的解析式为y=kx+b,
∵点M(4,16)和点P(8,0)在直线MP上,
∴
4k+b=16
8k+b=0
,
得
k=-4
b=32
,
∴直线MP的解析式为y=-4x+32;
设F(m,-4m+32),则E(m,-m2+8m),
∵点F在线段MP上运动,
∴4≤m≤8,
∴EF=-m2+8m-(-4m+32)=-m2+12m-32,
∴当m=-
b
2a
=6时,EF=
4ac-b2
4a
=
4×(-1)×(-32)-122
4×(-1)
=
16
4
=4,
∴线段EF的最大值是4.
再把x=2t,y=0代入y=-x2+bx中,得b=2t
故抛物线的解析式为y=-x2+2tx.
(2)∵t>0,
∴在点P和矩形ABCD开始运动时就经过矩形区域ABCD,
当抛物线经过点A时,将A(t+4,9)代入y=-x2+2tx中,得-(t+4)2+2t(t+4)=9,
整理,解方程得:t1=-5(舍去),t2=5,
即可得当t>5时,抛物线不在经过矩形区域ABCD,
综上可得t的范围为:0<t≤5,
(3)如图,当t=4秒时,此时点D和点P重合,抛物线的解析式为y=-x2+8x.
设直线MP的解析式为y=kx+b,
∵点M(4,16)和点P(8,0)在直线MP上,
∴
4k+b=16
8k+b=0
,
得
k=-4
b=32
,
∴直线MP的解析式为y=-4x+32;
设F(m,-4m+32),则E(m,-m2+8m),
∵点F在线段MP上运动,
∴4≤m≤8,
∴EF=-m2+8m-(-4m+32)=-m2+12m-32,
∴当m=-
b
2a
=6时,EF=
4ac-b2
4a
=
4×(-1)×(-32)-122
4×(-1)
=
16
4
=4,
∴线段EF的最大值是4.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
提问不清楚。
追问
不能在补充了,我也会了 谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询