1个回答
展开全部
证明:在BC上截取BE=BA,延长BD到F使BF=BC,连接DE、CF.
又∵∠1=∠2,BD是公共边,BE=BA,
∴△ABD≌△EBD
∴∠DEB=∠A=100°,
则得∠DEC=80°
∵AB=AC,BD平分∠ABC
∴∠1=∠2=20°,∠3=40°
∵BC=BF,∠2=20°,
∴∠F=∠FCB=1 /2 (180°-∠2)=80°
则∠F=∠DEC
∴∠4=80°-∠3=40°,
∴∠3=∠4,∠F=∠DEC,
又∵DC=DC,
∴△DCE≌△DCF(AAS)
∴DF=DE=AD
∴BC=BF=BD+DF=BD+AD
又∵∠1=∠2,BD是公共边,BE=BA,
∴△ABD≌△EBD
∴∠DEB=∠A=100°,
则得∠DEC=80°
∵AB=AC,BD平分∠ABC
∴∠1=∠2=20°,∠3=40°
∵BC=BF,∠2=20°,
∴∠F=∠FCB=1 /2 (180°-∠2)=80°
则∠F=∠DEC
∴∠4=80°-∠3=40°,
∴∠3=∠4,∠F=∠DEC,
又∵DC=DC,
∴△DCE≌△DCF(AAS)
∴DF=DE=AD
∴BC=BF=BD+DF=BD+AD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询