![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
对(xlnx)/(1+x²)²的不定积分
![](https://ecmc.bdimg.com/public03/b4cb859ca634443212c22993b0c87088.png)
2025-02-17 广告
联韬企业管理咨询有限公司是专注在供应链管理和运营管理领域的培训咨询机构,承办CPIM/CSCP/CLTD/SCOR DS认证项目的教育培训及考试管理,为企业和个人提供教育培训,专业认证考试和咨询指导服务。帮助企业实施和改进管理流程;提高管理...
点击进入详情页
本回答由上海联韬企业提供
展开全部
∫ xlnx /(1+x^2)^2 dx
=(1/2) ∫ lnx /(1+x^2)^2 d(x^2+1)
=-(1/2) ∫ lnx d [ 1/(1+x^2) ] 分部积分法
=-(1/2)lnx / (1+x^2) +(1/2) ∫ 1/(1+x^2) d(lnx)
=-(1/2)lnx /(1+x^2) +(1/2) ∫ (1+x^2-x^2)* [ 1/(1+x^2) ]*(1/x) dx
=-(1/2)lnx /(1+x^2) +(1/2) ∫ 1/x dx -(1/4) ∫ 2x/(1+x^2) dx
=-(1/2) lnx /(1+x^2) +1/2*lnx -(1/4) ln(1+x^2) +C
=(1/2) ∫ lnx /(1+x^2)^2 d(x^2+1)
=-(1/2) ∫ lnx d [ 1/(1+x^2) ] 分部积分法
=-(1/2)lnx / (1+x^2) +(1/2) ∫ 1/(1+x^2) d(lnx)
=-(1/2)lnx /(1+x^2) +(1/2) ∫ (1+x^2-x^2)* [ 1/(1+x^2) ]*(1/x) dx
=-(1/2)lnx /(1+x^2) +(1/2) ∫ 1/x dx -(1/4) ∫ 2x/(1+x^2) dx
=-(1/2) lnx /(1+x^2) +1/2*lnx -(1/4) ln(1+x^2) +C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询