微分方程xdy+2ydx=0满足初始条件y|x=2 =1的特解??
展开全部
xdy=-2ydx,
dy/y=-2dx/x,
两端积分,得
lny=-2lnx+C1,
y=e^(ln(x^(-2)+C1),
y=Cx^(-2),
代入y|x=2=1,得
C=4
所以y=4*x^(-2)
dy/y=-2dx/x,
两端积分,得
lny=-2lnx+C1,
y=e^(ln(x^(-2)+C1),
y=Cx^(-2),
代入y|x=2=1,得
C=4
所以y=4*x^(-2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询