2个回答
展开全部
1.如图,在锐角三角形ABC中,CD⊥AB,BE⊥AC,且CD,BE交于点P,若∠A=50°,求∠BPC的度数。
2、过等腰直角三角形直角顶点A作直线AM平行于斜边BC,在AM上取点D,使BD=BC,且DB与AC所在直线交于E,求证:CD=CE。
3、Rt△ABC,AB=AC,BM是中线,AD⊥BM交BC于D
求证:∠AMB=∠CMD
4.如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由
5. 如图14-29①,在ΔABC中∠ACB=900,AC=BC,M为AB中点,P为AB上一动点(P不与A、B重合),PE⊥AC于点E,PF⊥BC于点F。
(1)求证:ME=MF,ME⊥MF;
(2)如点P移动至AB的延长线上,如图14-29②,是否仍有如上结论?请予以证明。
6.已知:如图,点D在△ABC的边CA的延长线上,点E在BA的延长线上,CF、EF分别是∠ACB、∠AED的平分线,且∠B=30°,∠D=40°,求∠F的度数。
7、等边三角形ABC和等边三角形DEF,D在AC边上。延长BD交CE延长线于N,延长AE交BC延长线于M。
求证:CM=CN
8、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
2、过等腰直角三角形直角顶点A作直线AM平行于斜边BC,在AM上取点D,使BD=BC,且DB与AC所在直线交于E,求证:CD=CE。
3、Rt△ABC,AB=AC,BM是中线,AD⊥BM交BC于D
求证:∠AMB=∠CMD
4.如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由
5. 如图14-29①,在ΔABC中∠ACB=900,AC=BC,M为AB中点,P为AB上一动点(P不与A、B重合),PE⊥AC于点E,PF⊥BC于点F。
(1)求证:ME=MF,ME⊥MF;
(2)如点P移动至AB的延长线上,如图14-29②,是否仍有如上结论?请予以证明。
6.已知:如图,点D在△ABC的边CA的延长线上,点E在BA的延长线上,CF、EF分别是∠ACB、∠AED的平分线,且∠B=30°,∠D=40°,求∠F的度数。
7、等边三角形ABC和等边三角形DEF,D在AC边上。延长BD交CE延长线于N,延长AE交BC延长线于M。
求证:CM=CN
8、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
展开全部
1.如图,在锐角三角形ABC中,CD⊥AB,BE⊥AC,且CD,BE交于点P,若∠A=50°,求∠BPC的度数。
2、过等腰直角三角形直角顶点A作直线AM平行于斜边BC,在AM上取点D,使BD=BC,且DB与AC所在直线交于E,求证:CD=CE。
3、Rt△ABC,AB=AC,BM是中线,AD⊥BM交BC于D
求证:∠AMB=∠CMD
4.如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由
5. 如图14-29①,在ΔABC中∠ACB=900,AC=BC,M为AB中点,P为AB上一动点(P不与A、B重合),PE⊥AC于点E,PF⊥BC于点F。
(1)求证:ME=MF,ME⊥MF;
(2)如点P移动至AB的延长线上,如图14-29②,是否仍有如上结论?请予以证明。
6.已知:如图,点D在△ABC的边CA的延长线上,点E在BA的延长线上,CF、EF分别是∠ACB、∠AED的平分线,且∠B=30°,∠D=40°,求∠F的度数。
7、等边三角形ABC和等边三角形DEF,D在AC边上。延长BD交CE延长线于N,延长AE交BC延长线于M。
求证:CM=CN
8、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
2、过等腰直角三角形直角顶点A作直线AM平行于斜边BC,在AM上取点D,使BD=BC,且DB与AC所在直线交于E,求证:CD=CE。
3、Rt△ABC,AB=AC,BM是中线,AD⊥BM交BC于D
求证:∠AMB=∠CMD
4.如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由
5. 如图14-29①,在ΔABC中∠ACB=900,AC=BC,M为AB中点,P为AB上一动点(P不与A、B重合),PE⊥AC于点E,PF⊥BC于点F。
(1)求证:ME=MF,ME⊥MF;
(2)如点P移动至AB的延长线上,如图14-29②,是否仍有如上结论?请予以证明。
6.已知:如图,点D在△ABC的边CA的延长线上,点E在BA的延长线上,CF、EF分别是∠ACB、∠AED的平分线,且∠B=30°,∠D=40°,求∠F的度数。
7、等边三角形ABC和等边三角形DEF,D在AC边上。延长BD交CE延长线于N,延长AE交BC延长线于M。
求证:CM=CN
8、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询