在△ABC中,∠ABC=∠ACB,点D是BC延长线上的任意一点,E为直线AC上一点,且∠ADE=∠AED,求证∠BAD=2∠CDE

 我来答
慕野清流
2012-05-24 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2306万
展开全部
1)∵∠ABC=∠ACB
∴∠C=∠B
∵∠ADB+∠ADE+∠CDE=180°
∠CED+∠AED=180°
又∵∠ADE=∠AED
∴∠CED=∠ADB+∠CDE
∵∠ADB+∠B+∠BAD=180°
∠ADB+∠C+∠BAD=180°

∠CDE+∠CED+∠C=180°
∠CDE+∠ADB+∠CDE(∠CED=∠ADB+∠CDE)+∠C=180°

∴∠BAD=2∠CDE
追问
谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式