椭圆求焦点计算公式
计算公式为:a^2-b^2=c^2
如果长轴长在x轴上的话,焦距为(C,0),(-C,0),如果长轴长在y轴上的话,焦距为(0,C),(0,-C)。
其中:长轴长为:2a;短轴长为:2b;焦距为:2c。
扩展资料:
椭圆性质:
(1)范围:由方程可得|x|≤a,|y|≤b,因此椭圆位于直线x=±a,y=±b所围成的矩形里。
(2)对称性:椭圆既是轴对称图形,也是中心对称图形,它有两根对称轴,一个对称中心,一般地对于曲线f(x,y)=0,若以-y代y方程不变,则曲线关于x轴对称。
若以-x代x方程不变,则曲线关于y轴对称;若同时以-x代x,以-y代y方程不变,那么曲线关于原点对称,应结合点P(x,y)分别关于x轴、y轴、原点的对称点的坐标来理解和记忆。
参考资料来源:百度百科-椭圆的标准方程
2024-10-30 广告
根据a^2-b^2=c^2,其中a为长轴长,b为短轴长,c为焦距。
如果长轴长在x轴上的话,焦距为(C,0),(-C,0),如果长轴长在y轴上的话,焦距为(0,C),(0,-C)。
扩展资料:
基本性质
1、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
2、顶点:(a,0)(-a,0)(0,b)(0,-b)。
3、离心率:
4、离心率范围:0<e<1。
5、离心率越小越接近于圆,越大则椭圆就越扁。
6、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。
7、
8、P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。
9、椭圆的周长等于特定的正弦曲线在一个周期内的长度。
参考资料来源:百度百科-椭圆的标准方程
是平方还是?
平方
焦距=√(a²-b²),椭圆形S=πab,C=[3/2(a+b)-√(ab)]。