limx→∞[(2x+3)/(2x+1)]^(x+1)
2个回答
展开全部
lim(x→∞)[(2x+3)/(2x+1)]^(x+1)
=lim(x→∞)[ 1+ 2/(2x+1)]^(x+1)
let
1/y = 2/(2x+1)
2x+1= 2y
2(x+1)=2y+1
x+1= (2y+1)/2
x->∞, y->∞
lim(x→∞)[ 1+ 2/(2x+1)]^(x+1)
=lim(y→∞)[ 1+ 1/y]^(y+1/2)
= lim(y→∞)[ 1+ 1/y]^(y) lim(y→∞)[ 1+ 1/y]^(1/2)
=e
=lim(x→∞)[ 1+ 2/(2x+1)]^(x+1)
let
1/y = 2/(2x+1)
2x+1= 2y
2(x+1)=2y+1
x+1= (2y+1)/2
x->∞, y->∞
lim(x→∞)[ 1+ 2/(2x+1)]^(x+1)
=lim(y→∞)[ 1+ 1/y]^(y+1/2)
= lim(y→∞)[ 1+ 1/y]^(y) lim(y→∞)[ 1+ 1/y]^(1/2)
=e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询