这道题的答案究竟该是多少?
如果在一条3kHz的信道上发送一个二进制信号,该信道的信噪比为20dB,则最大可达到的数据传输率为多少?解:信噪比为20dB即S/N=100.由于log2101≈6.65...
如果在一条3kHz的信道上发送一个二进制信号,该信道的信噪比为20dB,则最大可达到的数据传输率为多少?
解:信噪比为20dB 即S/N=100.
由于 log2101≈6.658,由香农定理,该信道的信道容量为3log2(1+100)=19.98kbps。
又根据奈奎斯特定理,发送二进制信号的3kHz 信道的最大数据传输速率为
2×3log22=6kbps。
所以可以取得的最大数据传输速率为6kbps。
本题中 算出了2个速率 究竟那个才是最大可达到的数据传输率啊 弄糊涂了 请高手指教 展开
解:信噪比为20dB 即S/N=100.
由于 log2101≈6.658,由香农定理,该信道的信道容量为3log2(1+100)=19.98kbps。
又根据奈奎斯特定理,发送二进制信号的3kHz 信道的最大数据传输速率为
2×3log22=6kbps。
所以可以取得的最大数据传输速率为6kbps。
本题中 算出了2个速率 究竟那个才是最大可达到的数据传输率啊 弄糊涂了 请高手指教 展开
展开全部
由香农定理算出的答案为正确的!
在一个带宽为 3KHZ、没有噪声的信道,能够达到的码元速率极限值为6kbps 码元速率是信道传输数据能力的极限,奈奎斯特(Nyquist)首先给出了无噪声情况下码元速率的极限值与信道带宽的关系:B=2H (Baud)其中,H是信道的带宽,也称频率范围,即信道能传输的上、下限频率的差值。由此可以推出表征信道数据传输能力的奈奎斯特公式:C=2•H•log2N (bps)对于特定的信道,其码元速率不可能超过信道带宽的2倍,但若能提高每个码元可能取的离散值的个数,则数据传输速率便可成倍提高。例如,普通电话线路的带宽约为3kHz,则其码元速率的极限值为6kBaud。若每个码元可能取得离散值的个数为32(即N=32),则最大数据传输速率可达C=2*3k*log2 32=30kbps。
实际的信道总要受到各种噪声的干扰,香农(Shannon)则进一步研究了受随机噪声干扰的信道的情况,给出了计算信道容量的香农公式: C=H*log2(1+S/N) (bps)其中,S表示信号功率,N为噪声功率,由此可见,只要提高信道的信噪比,便可提高信道的最大数据传输速率
在一个带宽为 3KHZ、没有噪声的信道,能够达到的码元速率极限值为6kbps 码元速率是信道传输数据能力的极限,奈奎斯特(Nyquist)首先给出了无噪声情况下码元速率的极限值与信道带宽的关系:B=2H (Baud)其中,H是信道的带宽,也称频率范围,即信道能传输的上、下限频率的差值。由此可以推出表征信道数据传输能力的奈奎斯特公式:C=2•H•log2N (bps)对于特定的信道,其码元速率不可能超过信道带宽的2倍,但若能提高每个码元可能取的离散值的个数,则数据传输速率便可成倍提高。例如,普通电话线路的带宽约为3kHz,则其码元速率的极限值为6kBaud。若每个码元可能取得离散值的个数为32(即N=32),则最大数据传输速率可达C=2*3k*log2 32=30kbps。
实际的信道总要受到各种噪声的干扰,香农(Shannon)则进一步研究了受随机噪声干扰的信道的情况,给出了计算信道容量的香农公式: C=H*log2(1+S/N) (bps)其中,S表示信号功率,N为噪声功率,由此可见,只要提高信道的信噪比,便可提高信道的最大数据传输速率
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询