如图,已知抛物线y=ax2+bx+c经过点A(1,1)B(6,1)C(0,-2),与x轴交于E,F两点,点P(m,n)在抛物线上 50
且0<m<6,直线BC与x轴交于点D(1)求抛物线的解析式(2)过点P作y轴的平行线交直线BC于点Q,问点P在何处时,线段PQ最长,最长为多少(3)设四边形OPDC的面积...
且0<m<6,直线BC与x轴交于点D (1)求抛物线的解析式 (2)过点P作y轴的平行线交直线BC于点Q,问点P在何处时,线段PQ最长,最长为多少 (3)设四边形OPDC的面积为S,当S取何值时,满足条件的点P只有一个?当S取何值时,满足条件的点P有两个?
展开
展开全部
(1)
A: a + b + c = 1
B: 36a + 6b + c 1
C: c = -2
a = -1/2, b = 7/2
抛物线的解析式: y = -x²/2 + 7x/2 -2
(2) BC的解析式: (y+2)/(x-0) = (1 + 2)/(6-0)
x - 2y -4 = 0, y = x/2 -2
取 y = 0, x = 4
D(4, 0)
P(m, -m²/2 + 7m/2 -2), Q(m, m/2 -2)
PQ = -m²/2 + 7m/2 -2 - (m/2 -2) = -m²/2 + 3m
= -(m - 3)²/2 + 9/2
m = 3时, PQ最长, 为9/2
P(3, 4)
(3) S = S∆OPC + S∆CDP
S∆OPC = (1/2)OC*P的横坐标 = (1/2)*2*m = m
CD = √[(4 - 0)² + (0 + 2)²] = 2√5
P(m, -m²/2 + 7m/2 -2)与CD (x - 2y -4 = 0)的距离h = |m -2(-m²/2 + 7m/2 -2) -4|/√(1² + 2²)
= |m² - 6m|/√5
= (6m - m²)/√5 (易证, 0<m<6时, |m² - 6m| = 6m - m²)
S∆CDP = (1/2)*CD*h
= (1/2)*2√5*(6m - m²)/√5
= 6m - m²
S = m + 6m - m² = 7m - m²
m² - 7m + S = 0
判别式∆=49-4S
∆ = 0时, S = 49/4, 满足条件的点P只有一个
∆ > 0时, S < 49/4, 满足条件的点P有两个
A: a + b + c = 1
B: 36a + 6b + c 1
C: c = -2
a = -1/2, b = 7/2
抛物线的解析式: y = -x²/2 + 7x/2 -2
(2) BC的解析式: (y+2)/(x-0) = (1 + 2)/(6-0)
x - 2y -4 = 0, y = x/2 -2
取 y = 0, x = 4
D(4, 0)
P(m, -m²/2 + 7m/2 -2), Q(m, m/2 -2)
PQ = -m²/2 + 7m/2 -2 - (m/2 -2) = -m²/2 + 3m
= -(m - 3)²/2 + 9/2
m = 3时, PQ最长, 为9/2
P(3, 4)
(3) S = S∆OPC + S∆CDP
S∆OPC = (1/2)OC*P的横坐标 = (1/2)*2*m = m
CD = √[(4 - 0)² + (0 + 2)²] = 2√5
P(m, -m²/2 + 7m/2 -2)与CD (x - 2y -4 = 0)的距离h = |m -2(-m²/2 + 7m/2 -2) -4|/√(1² + 2²)
= |m² - 6m|/√5
= (6m - m²)/√5 (易证, 0<m<6时, |m² - 6m| = 6m - m²)
S∆CDP = (1/2)*CD*h
= (1/2)*2√5*(6m - m²)/√5
= 6m - m²
S = m + 6m - m² = 7m - m²
m² - 7m + S = 0
判别式∆=49-4S
∆ = 0时, S = 49/4, 满足条件的点P只有一个
∆ > 0时, S < 49/4, 满足条件的点P有两个
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询