通道蛋白,载体蛋白,受体蛋白三者之间的差别
相同点:化学本质均为蛋白质、分布均在细胞的膜结构中、都有控制特定物质跨膜运输的功能;对被运输的物质具有高度的特异性或选择性。
不同点:
通道蛋白参与的只是被动运输(易化扩散),在运输过程中并不与被运输的分子或离子相结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。
载体蛋白参与的有主动转运和易化扩散,在运输过程中与相应的分子特异性结合(具有类似于酶和底物结合的饱和效应),自身的构型会发生变化,并且会移动。通道蛋白转运速率与物质浓度成比例,且比载体蛋白介导的转运速度更快(1000倍以上)。
通道蛋白其结构和功能状态在细胞内外理化因子作用下,能在数毫秒至数十毫秒的时间内迅速激活开放,随后迅速失活或关闭,载体蛋白无此特性。
拓展延伸
载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。每种载体蛋白能与特定的溶质分子结合,通过一系列构象的改变介导溶质分子跨膜转运。
载体蛋白相当于结合在细胞膜上的酶,有特异性结合位点,可与底物(溶质)发生暂时的、可逆性的结合和分离,且一种特异性载体只转运一种类型的分子或离子;转运过程类似于酶与底物作用的饱和动力学曲线,因此有人将载体蛋白称为通透酶。
通道蛋白是一类跨越细胞膜双分子层的蛋白质,它所介导的被动运输不需要溶质分子与其结合,而是横跨膜形成亲水通道,允许大小适宜的分子和带电离子通过。这些通道可分为两大类:离子通道和水通道。
1.离子通道目前发现的通道蛋白已有100余种。离子通道有两个显著的特征:一是具有离子选择性。离子通道对被转运的离子的大小和电荷都有高度的选择性,而且转运速度高,可达106个离子/s,其速率是已知的任何一种载体蛋白的最快速率的1000倍以上。驱动带电荷的离子跨膜转运的净驱动力来自两种力的合力,一种是溶质的浓度梯度,另一种是跨膜电位差,这种净驱动力构成离子跨膜的电化学梯度,这种梯度决定离子跨膜的被动运输的方向。第二个特征是离子通道是门控的,即离子通道的活性由通道的开或关两种构象所调节。并通过通道开关应答各种信号。多数情况下,离子通道呈关闭状态,只有在膜电位变化、化学信号或压力刺激后,才开启形成跨膜的离子通道。因此离子通道又区分为电压力通道,配体门通道和压力激活通道。
2.水通道水是一种特别的物质,水分子虽然不溶于脂,并且具有极性,但也很容易通过膜。长期以来普遍认为细胞内外的水分子是以简单扩散的方式透过脂双层膜的。后来发现某些细胞在低渗溶液中对水的通透性很高,这很难以简单扩散来解释。如将红细胞移入低渗溶液中,很快吸水膨胀而溶血,而水生动物的卵母细胞在低渗溶液中不膨胀。因此人们推测水的跨膜转运除了简单扩散外还存在着某种特殊的机制,并提出了水通道的概念。直到1988年美国的科学家阿格雷(P.Agre)成功将构成水通道的蛋白质分离出来,从而证实了水通道的存在。
受体蛋白质 ,化学传递物质和引起嗅觉、味觉的化学物质以及多种药物等,通过与细胞膜上的各相应物质进行特异结合后,才会引起其作用。这类细胞膜上的物质多为蛋白质,而称为受体蛋白质。目前对受体蛋白质已能进行分离提纯,并对其特性进行研究。例如乙酰胆碱的受体是从富于该种蛋白质的电鱼放电器官中以单纯蛋白质成分而提取获得的。对其分子量及分子结构,以及其与阻断乙酰胆碱的结合力等方面的特性。
2024-08-13 广告
差别:通道蛋白参与的只是被动运输,在运输过程中并不与被运输的分子或离子相结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。
载体蛋白参与的有主动转运和易化扩散,在运输过程中与相应的分子特异性结合,自身的构型会发生变化,并且会移动。通道蛋白转运速率与物质浓度成比例,且比载体蛋白介导的转运速度更快。
通道蛋白其结构和功能状态在细胞内外理化因子作用下,能在数毫秒至数十毫秒的时间内迅速激活开放,随后迅速失活或关闭,载体蛋白无此特性。
分类
通道蛋白可以是单体蛋白,也可以是多亚基组成的蛋白,它们都是通过疏水的氨基酸链进行重排,形成水性通道。通道蛋白本身并不直接与小的带电荷的分子相互作用,这些小的带电荷的分子可以自由的扩散通过由脂双层中膜蛋白带电荷的亲水区所形成的水性通道。
通道蛋白的运输作用具有选择性,所以在细胞膜中有各种不同的通道蛋白。通道蛋白参与的只是被动运输,在运输过程中并不与被运输的分子结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。
以上内容参考:百度百科-通道蛋白
载体蛋白相当于结合在细胞膜上的酶,有特异性结合位点,可与底物(溶质)发生暂时的、可逆性的结合和分离,且一种特异性载体只转运一种类型的分子或离子。物质的转运过程类似于酶与底物作用的饱和动力学曲线,既可以被底物类似物竞争性抑制,又可以被痕量的某种成分(抑制剂)非竞争性抑制以及对pH有依赖性等。因此有人将载体蛋白称为通透酶,与酶不同的是载体蛋白可以改变过程的平衡点,加快物质沿着自由能减少的方向跨膜运输的速率;此外与酶的不同是载体蛋白对转运的溶质不做任何共价修饰。
通道蛋白是一类跨越细胞膜双分子层的蛋白质,它所介导的被动运输不需要溶质分子与其结合,而是横跨膜形成亲水通道,允许大小适宜的分子和带电离子通过。通道蛋白可以是单体蛋白,也可以是多亚基组成的蛋白,它们都是通过疏水的氨基酸链进行重排,形成水性通道。某些通道蛋白在革兰氏阴性细菌的外膜、线粒体或叶绿体的外膜上形非选择性的通道。绝大多数的通道蛋白形成有选择性开关的多次跨膜通道。这些通道可分为两大类:离子通道和水通道。
化学传递物质和引起嗅觉、味觉的化学物质以及多种药物等,通过与细胞膜上的各相应物质进行特异结合后,才会引起其作用。这类细胞膜上的物质多为蛋白质,而称为受体蛋白质。目前对受体蛋白质已能进行分离提纯,并对其特性进行研究。例如乙酰胆碱的受体是从富于该种蛋白质的电鱼放电器官中以单纯蛋白质成分而提取获得的。对其分子量及分子结构,以及其与阻断乙酰胆碱的结合力等方面的特性,现在正在研究中。
1、通道蛋白(Channel Proteins)
通道蛋白是一种蛋白质,可以形成细胞膜上的通道,允许特定的分子和离子通过。这些通道可以是开放的,也可以是关闭的,这取决于细胞的需要。例如,钾离子通道只允许钾离子通过。通道蛋白通过便利扩散,利用浓度梯度实现物质的传输,而不直接消耗能量。
2、载体蛋白(Carrier Proteins)
载体蛋白也位于细胞膜上,但它们通过与要传输的分子直接结合并改变其形状来工作,从而将分子从膜的一侧转移到另一侧。这种转运可以是主动的(消耗ATP能量),也可以是被动的(利用浓度梯度),具体取决于特定的载体蛋白和所转运的物质。
3、受体蛋白(Receptor Proteins)
受体蛋白是细胞膜上的一类蛋白质,可以与特定的信号分子(如激素,神经递质等)结合,从而引发细胞内的信号传导路线。当这些信号分子结合到受体蛋白上时,它们会改变受体的形状或活性,进而影响细胞内的分子路径。受体蛋白负责接收信息,而不是直接转运分子。