什么是二元logistic回归分析法

 我来答
平安银行我知道
优质机构答主

2021-08-16 · 百度认证:平安银行官方账号
平安银行我知道
中国平安诞生于1988年,是集金融保险、银行、投资等金融业务于一身的综合金融服务集团。作为全球百强企业与全球百强银行,平安银行信用卡中心将为您提供一站式金融产品与服务,让您的生活因平安不一样
向TA提问
展开全部
二元Logistic回归主要分为三类:
1、一种是因变量为二分类的Logistic回归, 这种回归称为二项logistic回归。
2、一种是因变量为无序多分类得logistic回归,这种回归称为多项式logistic回归。
3、还存在具有有序多类因变量的logistic回归。 例如,疾病的严重程度为高,中,低等。这种回归也称为累积logistic回归或序次logistic回归。
温馨提示:以上信息仅供参考。
应答时间:2021-08-16,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
59分粑粑分享生活
高粉答主

2020-02-26 · 专注生活好物分享,解答日常方方面面的问题
59分粑粑分享生活
采纳数:326 获赞数:119811

向TA提问 私信TA
展开全部

二元Logistic回归主要分为三类:

1、一种是因变量为二分类的Logistic回归, 这种回归称为二项logistic回归

2、一种是因变量为无序多分类得logistic回归,这种回归称为多项式logistic回归。

3、还存在具有有序多类因变量的logistic回归。 例如,疾病的严重程度为高,中,低等。这种回归也称为累积logistic回归或序次logistic回归。

扩展资料:

二元logistic回归中“变量选择方法”如下:

1、向前选择(条件)

逐步选择方法,其中进入检验是基于得分统计量的显著性,移去检验是基于在条件参数估计基础上的似然比统计的概率。

2、向前选择(似然比)

逐步选择方法,其中进入检验是基于得分统计量的显著性,移去检验是基于在最大局部似然估计的似然比统计的概率。

3、向前选择 (Wald)

逐步选择方法,其中进入检验是基于得分统计量的显著性,移去检验是基于 Wald 统计的概率。

4、向后去除(条件)

逐步向后选择。移去检验基于在条件参数估计的似然比统计量的概率。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
墩墩hello
2016-12-12 · TA获得超过167个赞
知道小有建树答主
回答量:95
采纳率:100%
帮助的人:48.7万
展开全部
  Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。

  二值logistic回归:

  选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。把你的自变量选到协变量的框框里边。

  细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。那么我们为了模型的准确,就把这个交互效应也选到模型里去。我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。

  然后在下边有一个方法的下拉菜单。默认的是进入,就是强迫所有选择的变量都进入到模型里边。除去进入法以外,还有三种向前法,三种向后法。一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。再下边的选择变量则是用来选择你的个案的。一般也不用管它。

  选好主面板以后,单击分类(右上角),打开分类对话框。在这个对话框里边,左边的协变量的框框里边有你选好的自变量,右边写着分类协变量的框框则是空白的。你要把协变量里边的字符型变量和分类变量选到分类协变量里边去(系统会自动生成哑变量来方便分析,什么事哑变量具体参照前文)。这里的字符型变量指的是用值标签标注过得变量,不然光文字,系统也没法给你分析啊。选好以后,分类协变量下边还有一个更改对比的框框,我们知道,对于分类变量,spss需要有一个参照,每个分类都通过和这个参照进行比较来得到结果,更改对比这个框框就是用来选择参照的。默认的对比是指示符,也就是每个分类都和总体进行比较,除了指示符以外还有简单,差值等。这个框框不是很重要,默认就可以了。

  点击继续。然后打开保存对话框,勾选概率,组成员,包含协方差矩阵。点击继续,打开选项对话框,勾选分类图,估计值的相关性,迭代历史,exp(B)的CI,在模型中包含常数,输出——在每个步骤中。如果你的协变量有连续型的,或者小样本,那还要勾选Hosmer-Lemeshow拟合度,这个拟合度表现的会较好一些。

  继续,确定。

  然后,就会输出结果了。主要会输出六个表。

  第一个表是模型系数综合检验表,要看他模型的p值是不是小于0.05,判断我们这个logistic回归方程有没有意义。

  第二个表示模型汇总表。这个表里有两个R^2,叫做广义决定系数,也叫伪R^2,作用类似于线性回归里的决定系数,也是表示这个方程能够解释模型的百分之多少。由于计算方法不同,这两个广义决定系数的值往往不一样,但是出入并不会很大。

  在下边的分类表则表述了模型的稳定性。这个表最后一行百分比校正下边的三个数据列出来在实际值为0或者1时,模型预测正确的百分比,以及模型总的预测正确率。一般认为预测正确概率达到百分之五十就是良好(标准真够低的),当然正确率越高越好。

  在然后就是最重要的表了,方程中的变量表。第一行那个B下边是每个变量的系数。第五行的p值会告诉你每个变量是否适合留在方程里。如果有某个变量不适合,那就要从新去掉这个变量做回归。根据这个表就可以写出logistic方程了:P=Exp(常量+a1*变量1+a2*变量2.。。。)/(1+Exp(常量+a1*变量1+a2*变量2.。。。))。如果大家学过一点统计,那就应该对这个形式的方程不陌生。提供变量,它最后算出来会是一个介于0和1的数,也就是你的模型里设定的值比较大的情况发生的概率,比如你想推算会不会治愈,你设0治愈,1为没有治愈。那你的模型算出来就是没有治愈的概率。如果你想直接计算治愈的概率,那就需要更改一下设定,用1去代表治愈。

  此外倒数后两列有一个EXP(B),也就是OR值,哦,这个可不是或者的意思,OR值是优势比。在线性回归里边我们用标准化系数来对比两个自变量对于因变量的影响力的强弱,在logistic回归里边我们用优势比来比较不同的情况对于因变量的影响。举个例子。比如我想看性别对于某种病是否好转的影响,假设0代表女,1代表男,0代表不好转,1代表好转。发现这个变量的OR值为2.9,那么也就是说男人的好转的可能是女人好转的2.9倍。注意,这里都是以数值较大的那个情况为基准的。而且OR值可以直接给出这个倍数。如果是0,1,2各代表一类情况的时候,那就是2是1的2.9倍,1是0的2.9倍,以此类推。OR值对于方程没什么贡献,但是有助于直观的理解模型。在使用OR值得时候一定要结合它95%的置信区间来进行判断。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2021-01-09 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.2亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
堆巫堡5242
高粉答主

2021-01-10 · 醉心答题,欢迎关注
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式