人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大容错功能,怎么理解?
3个回答
展开全部
自适应、自学习能力:人工神经网络可以通过训练和学习获得网络的权值和结构,呈现出很强的自学习能力和对环境的适应能力。(就是可以根据环境要求,自动调节网络结构、节点权值、步长等)
自组织能力:通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数和结构。
容错性:人工神经网络通过自身的网络结构能够实现对信息的记忆,而所记忆的信息是存储在神经元
之间的权值中。从单个权值中看不出所存储的信息内容,因而是分布式的存储方式,这使网络具有良好的容错性。
自组织能力:通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数和结构。
容错性:人工神经网络通过自身的网络结构能够实现对信息的记忆,而所记忆的信息是存储在神经元
之间的权值中。从单个权值中看不出所存储的信息内容,因而是分布式的存储方式,这使网络具有良好的容错性。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看了一点书,不大懂,没有相关控制基础,不大好学吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询