人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大容错功能,怎么理解?

什么叫自学习、自组织、自适应、非线性函数逼近能力,而且还可以容错,什么意思?... 什么叫自学习、自组织、自适应、非线性函数逼近能力,而且还可以容错,什么意思? 展开
 我来答
lightrock2012
推荐于2017-11-28 · TA获得超过1600个赞
知道小有建树答主
回答量:572
采纳率:85%
帮助的人:331万
展开全部
人工神经网络就像一个黑盒子,用于模拟任意函数。根据一定的训练样本(即所需模拟函数已知的输入和输出关系)神经网络可以改变其内部结构使其模型特性逼近训练样本。即所谓的自学习,自组织和自适应。并且,由于神经网络是采用整体逼近的方式,不会由于个别样本误差而影响整个模型特性,即所谓容错特性。
其实用仿生的例子更容易理解,就像一个婴儿,父母不断教他说话,他最终能学习理解父母语言的意思,并且偶尔父母说错一两个字,孩子也能听懂。
邦彦技术
2024-05-11 广告
心理测评系统具备多重优势。首先,它显著提高了测评的效率和准确性,通过自动化的测试流程和数据分析,大大减少了人工操作的繁琐和误差。其次,心理测评系统具有广泛的应用范围,可以适应不同领域和场景的需求,为各个领域提供专业的心理测评服务。此外,系统... 点击进入详情页
本回答由邦彦技术提供
0811060121
2012-06-19
知道答主
回答量:8
采纳率:0%
帮助的人:1.3万
展开全部
自适应、自学习能力:人工神经网络可以通过训练和学习获得网络的权值和结构,呈现出很强的自学习能力和对环境的适应能力。(就是可以根据环境要求,自动调节网络结构、节点权值、步长等)

自组织能力:通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数和结构。

容错性:人工神经网络通过自身的网络结构能够实现对信息的记忆,而所记忆的信息是存储在神经元
之间的权值中。从单个权值中看不出所存储的信息内容,因而是分布式的存储方式,这使网络具有良好的容错性。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lizhichaosdut
2012-05-26 · TA获得超过293个赞
知道小有建树答主
回答量:285
采纳率:18%
帮助的人:62.3万
展开全部
看了一点书,不大懂,没有相关控制基础,不大好学吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式