求函数f(x)=sin(π/3+4x)+sin(4x-π/6)的最小正周期和递减区间
4个回答
展开全部
解答如下:
sin(4x - π/6)= cos(4x + π/3)
所以f(x)= sin(π/3+4x)+sin(4x-π/6)
= sin(π/3+4x)+ cos(4x + π/3)
= √2sin(4x + π/3 + π/4)
= √2sin(4x + 7π/12)
所以最小正周期为π/2
sin的递减区间为(π/2 + 2kπ,3π/2 + 2kπ),k ∈ Z
所以4x + 7π/12 ∈ (π/2 + 2kπ,3π/2 + 2kπ),k ∈ Z
所以递减区间为 x ∈ (-π/48 + kπ/2,11π/48 + kπ/2),k ∈ Z
sin(4x - π/6)= cos(4x + π/3)
所以f(x)= sin(π/3+4x)+sin(4x-π/6)
= sin(π/3+4x)+ cos(4x + π/3)
= √2sin(4x + π/3 + π/4)
= √2sin(4x + 7π/12)
所以最小正周期为π/2
sin的递减区间为(π/2 + 2kπ,3π/2 + 2kπ),k ∈ Z
所以4x + 7π/12 ∈ (π/2 + 2kπ,3π/2 + 2kπ),k ∈ Z
所以递减区间为 x ∈ (-π/48 + kπ/2,11π/48 + kπ/2),k ∈ Z
展开全部
f(x)=sin(π/3+4x)+sin(4x-π/6)
=sin(π/3+4x)+cos(2x+π/3)
=√2sin(4x+7π/12)
=√2cos(4x+π/12)
最小正周期T=2π/4=π/2
2kπ<=4x+π/12<=2kπ+π
kπ/2-π/48<=x<=kπ/2+11π/48
递减区间 [kπ/2-π/48,kπ/2+11π/48] k∈Z
=sin(π/3+4x)+cos(2x+π/3)
=√2sin(4x+7π/12)
=√2cos(4x+π/12)
最小正周期T=2π/4=π/2
2kπ<=4x+π/12<=2kπ+π
kπ/2-π/48<=x<=kπ/2+11π/48
递减区间 [kπ/2-π/48,kπ/2+11π/48] k∈Z
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(π/3+4x)=cos[π/2-(π/3+4x)]=cos(π/6-4x)
f(x)=sin(π/3+4x)+cos(4x-π/6)=2cos(4x-π/6)
最小正周期是:T=2π/4=π/2
2kπ=<4x-π/6<=2kπ+π
2kπ+π/6=<4x<=2kπ+7π/6
(kπ/2)+(π/24)=<x<=(kπ/2)+(7π/24)
递减区间是[(kπ/2)+(π/24),(kπ/2)+(7π/24)]
f(x)=sin(π/3+4x)+cos(4x-π/6)=2cos(4x-π/6)
最小正周期是:T=2π/4=π/2
2kπ=<4x-π/6<=2kπ+π
2kπ+π/6=<4x<=2kπ+7π/6
(kπ/2)+(π/24)=<x<=(kπ/2)+(7π/24)
递减区间是[(kπ/2)+(π/24),(kπ/2)+(7π/24)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
f(x)=sin(π/3+4x)+sin(4x-π/6)
f(x)=sin(π/3)cos(4x)+cos(π/3)sin(4x)+sin(4x)cos(π/6)-cos(4x)sin(π/6)
f(x)=(1/2)[√3cos(4x)+sin(4x)+√3sin(4x)-cos(4x)]
f(x)=(√2){[(√3-1)/(2√2)]cos(4x)+[(√3+1)/(2√2)]sin(4x)}
令:(√3-1)/(2√2)=sinα,则:(√3+1)/(2√2)=cosα
代入上式,有:
f(x)=(√2)[sinαcos(4x)+cosαsin(4x)]
f(x)=(√2)sin(4x+α)
最小正周期:
2π/4=π/2
递减区间:
f(x)=(√2)sin(4x+α)
令:f(x)≤0,即:(√2)sin(4x+α)≤0
整理,有:sin(4x+α)≤0
解得:kπ/2+3π/8-α/4≤x≤kπ/2+π/4-α/4,其中:k=0、±1、±2……,α=arcsin[(√6-√2)/4]
即:f(x)的递减区间是:
x∈[kπ/2+3π/8-α/4,kπ/2+π/4-α/4],其中:k=0、±1、±2……,α=arcsin[(√6-√2)/4]
f(x)=sin(π/3+4x)+sin(4x-π/6)
f(x)=sin(π/3)cos(4x)+cos(π/3)sin(4x)+sin(4x)cos(π/6)-cos(4x)sin(π/6)
f(x)=(1/2)[√3cos(4x)+sin(4x)+√3sin(4x)-cos(4x)]
f(x)=(√2){[(√3-1)/(2√2)]cos(4x)+[(√3+1)/(2√2)]sin(4x)}
令:(√3-1)/(2√2)=sinα,则:(√3+1)/(2√2)=cosα
代入上式,有:
f(x)=(√2)[sinαcos(4x)+cosαsin(4x)]
f(x)=(√2)sin(4x+α)
最小正周期:
2π/4=π/2
递减区间:
f(x)=(√2)sin(4x+α)
令:f(x)≤0,即:(√2)sin(4x+α)≤0
整理,有:sin(4x+α)≤0
解得:kπ/2+3π/8-α/4≤x≤kπ/2+π/4-α/4,其中:k=0、±1、±2……,α=arcsin[(√6-√2)/4]
即:f(x)的递减区间是:
x∈[kπ/2+3π/8-α/4,kπ/2+π/4-α/4],其中:k=0、±1、±2……,α=arcsin[(√6-√2)/4]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询