设随机变量X~N(-1,3),Y~U[2,4],Z~E(4),X,Y,Z相互独立,求E(3X-2XY+YZ+Z-2),D(2X+3Y-2Z+3)
1个回答
展开全部
EX = -1, DX = 3;
EY = (2+4)/2 = 3, DY = (4-2)^2/12 = 1/3;
EZ = 4^(-1) = 1/4, DZ = 4^(-2) = 1/16;
E(3X-2XY+YZ+Z-2)
= E(3X)-E(2XY)+E(YZ)+EZ-E(2)
= 3EX-2EXEY+EYEZ+EZ-2 (X, Y, Z相互独立)
= (代入可得结果)
D(2X+3Y-2Z+3)
= 2^2DX+3^2DY+(-2)^2DZ+0
= 4DX + 9DY + 4DZ (X, Y, Z相互独立)
= (代入可得结果)
EY = (2+4)/2 = 3, DY = (4-2)^2/12 = 1/3;
EZ = 4^(-1) = 1/4, DZ = 4^(-2) = 1/16;
E(3X-2XY+YZ+Z-2)
= E(3X)-E(2XY)+E(YZ)+EZ-E(2)
= 3EX-2EXEY+EYEZ+EZ-2 (X, Y, Z相互独立)
= (代入可得结果)
D(2X+3Y-2Z+3)
= 2^2DX+3^2DY+(-2)^2DZ+0
= 4DX + 9DY + 4DZ (X, Y, Z相互独立)
= (代入可得结果)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询