如图,在梯形ABCD中,AD∥BC,∠ABC=90°,且AD=1,AB=2,tan∠DCB=2,对角线AC和BD相交于点O。在AB上取一

如图,在梯形ABCD中,AD∥BC,∠ABC=90°,且AD=1,AB=2,tan∠DCB=2,对角线AC和BD相交于点O。在AB上取一点E,延长CB到点F,使得EB=F... 如图,在梯形ABCD中,AD∥BC,∠ABC=90°,且AD=1,AB=2,tan∠DCB=2,对角线AC和BD相交于点O。在AB上取一点E,延长CB到点F,使得EB=FB,连接AF、CE.
(1)求证:线段AF⊥CE
(2)如图二,将△EBF饶点B逆时针旋转到边BF恰好落在线段BO上时,边EF与BC交于点M,判断(1)中结论是否发生变化,写出你的猜想并加以证明
(3)当OF=√5/6时,证明:△BME~△BOA
展开
wzhq777
高粉答主

2012-05-26 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.2亿
展开全部
俊狼猎英团队为您解答:
⑴过D作DG⊥BC于G,则ABGD是矩形,∴DG=AB=2,
∵tanC=DG/CG=2,∴CG=1,∴BC=AD+CG=2,∴AB=BC,
∵BE=BF,∴RTΔBAF≌RTΔBCE,∴∠ECB=∠BAF,
∵∠BAF+∠F=90°,∴∠ECB+∠F=90°,∴AF⊥CE。
⑵AF⊥CE。
理由:∵∠ABC=∠EBF=90°,∴∠ABC-∠FBC=∠EBF-∠FBC,即∠ABF=∠CBE,
∵BA=BC,BF=BE,∴ΔBAF≌ΔBCE,∴∠BAF=∠BCE,
延长AF交BC于H、交CE于P,则∠CHP=∠AHB,
又∠BAF+∠AHB=90°,∴∠CHP+∠BCE=90°,∴AF⊥CE。
⑶在RTΔABC中,AB=AC,∴∠BAO=45°,又ΔBEF是等腰直角三角形,∴∠BEM=45°
且∠ABO=∠CBE(⑵中已证),
∴ΔBME∽ΔBOA。(已知条件中的线段OF=√5/6是多余的)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式