函数f(x)=sin(ωx+φ)(ω>0,|φ|<π/2)的最小正周期为π,且其图像向又……
函数f(x)=sin(ωx+φ)(ω>0,|φ|<π/2)的最小正周期为π,且其图像向又向右平移π/12个单位后得到的函数为奇函数,则函数f(x)的图像是关于...
函数f(x)=sin(ωx+φ)(ω>0,|φ|<π/2)的最小正周期为π,且其图像向又向右平移π/12个单位后得到的函数为奇函数,则函数f(x)的图像 是关于(5π/12,0)对称 还是关于直线x=5π/12对称的 为什么?要过程
展开
2个回答
展开全部
因为最小正周期T=2π/ω=π,所以ω=2,
f(x)=sin(2x+φ)的图像向右平移π/12个单位,
得到g(x)=sin[2(x-π)+φ]=sin(2x-π/6+φ),
因为它是奇函数,所以g(0)=sin(φ-π/6)=0,
即φ=π/6+kπ,k∈Z,
由|φ|<π/2,得φ=π/6
所以f(x)=sin(2x+π/6),
当x=5π/12时,f(x)=sinπ=0,
所以f(x)关于点(5π/12,0)对称。,
f(x)=sin(2x+φ)的图像向右平移π/12个单位,
得到g(x)=sin[2(x-π)+φ]=sin(2x-π/6+φ),
因为它是奇函数,所以g(0)=sin(φ-π/6)=0,
即φ=π/6+kπ,k∈Z,
由|φ|<π/2,得φ=π/6
所以f(x)=sin(2x+π/6),
当x=5π/12时,f(x)=sinπ=0,
所以f(x)关于点(5π/12,0)对称。,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询