高数,第八题,求过程
1个回答
展开全部
证明:
1°必要性
F'(0)
=lim(x→0) [F(x)-F(0)]/(x-0)
=lim(x→0) [f(x)(1+|sinx|) - f(0)(1+|sin0|)]/x
=lim(x→0) [f(x)(1+|sinx|) - f(0)]/x
若要上式成立,必须:
[f(x)(1+|sinx|) - f(0)]/x = F'(0)+o(x),其中o(x)是关于x的高阶无穷小
f(x)(1+|sinx|) - f(0) = xF'(0)+o(x)
f(x)(1+|sinx|) = xF'(0)+f(0)+o(x)
因此,必有:
lim(x→0) f(x)(1+|sinx|) =lim(x→0) [xF'(0)+f(0)+o(x)] =0
即:
lim(x→0) f(x) =lim(x→0) f(0) =0
∴f(x)在x=0处连续,且f(0)=0
2°充分性
当f(0)=0时,
F'(0)
=lim(x→0) [F(x)-F(0)]/(x-0)
=lim(x→0) [f(x)(1+|sinx|) - f(0)(1+|sin0|)]/x
=lim(x→0) [f(x)(1+0) - 0]/x
=lim(x→0) f(x)/x
=lim(x→0) [f(x)-f(0)]/(x-0)
=f'(0)
∴F(x)在x=0处可导!
证毕!
1°必要性
F'(0)
=lim(x→0) [F(x)-F(0)]/(x-0)
=lim(x→0) [f(x)(1+|sinx|) - f(0)(1+|sin0|)]/x
=lim(x→0) [f(x)(1+|sinx|) - f(0)]/x
若要上式成立,必须:
[f(x)(1+|sinx|) - f(0)]/x = F'(0)+o(x),其中o(x)是关于x的高阶无穷小
f(x)(1+|sinx|) - f(0) = xF'(0)+o(x)
f(x)(1+|sinx|) = xF'(0)+f(0)+o(x)
因此,必有:
lim(x→0) f(x)(1+|sinx|) =lim(x→0) [xF'(0)+f(0)+o(x)] =0
即:
lim(x→0) f(x) =lim(x→0) f(0) =0
∴f(x)在x=0处连续,且f(0)=0
2°充分性
当f(0)=0时,
F'(0)
=lim(x→0) [F(x)-F(0)]/(x-0)
=lim(x→0) [f(x)(1+|sinx|) - f(0)(1+|sin0|)]/x
=lim(x→0) [f(x)(1+0) - 0]/x
=lim(x→0) f(x)/x
=lim(x→0) [f(x)-f(0)]/(x-0)
=f'(0)
∴F(x)在x=0处可导!
证毕!
更多追问追答
追问
那个充分性的证明
应该先证明连续吧!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询