因式分解怎样才能学好?
展开全部
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。 注意三原则 1.分解要彻底(是否有公因式,是否可用公式) 2.最后结果只有小括号 3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1)) 4.最后结果每一项都为最简因式 归纳方法:北师大版八下课本上有的 1.提公因式法。 2.公式法。 3.分组分解法。 4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5.组合分解法。 6.十字相乘法。 7.双十字相乘法。 8.配方法。 9.拆项补项法。 10.换元法。 11.长除法。 12.求根法。 13.图象法。 14.主元法。 15.待定系数法。 16.特殊值法。 17.因式定理法。
更多追问追答
追问
可以稍微详细点吗
追答
提公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提尽;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-(a-b-c)m a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。 注意:把2a+1/2变成2(a+1/4)不叫提公因式
公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。平方差公式: (a+b)(a-b)=a^2;-b^2; 反过来为a^2;-b^2;=(a+b)(a-b) 完全平方公式:(a+b)^2;=a^2;+2ab+b^2; 反过来为a^2;+2ab+b^2;=(a+b)^2; (a-b)^2;=a^2;-2ab+b^2; a^2;-2ab+b^2;=(a-b)^2;
分解因式技巧
1.分解因式技巧掌握:①分解因式是多项式的恒等变形,要求等式左边必须是多项式 ②分解因式的结果必须是以乘积的形式表示 ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数④分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。2.提公因式法基本步骤:(1)找出公因式(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母 ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式 ③提完公因式后,另一因式的项数与原多项式的项数相同。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询