在△ABC中tanA=1/4,tanB=3/5.(I)求角C的大小;(II)若△ABC最大边的边长为√17,求最小边的边长。
1个回答
展开全部
因为A+B+C=180
所以C=180-(A+B)
tanC=tan(180-(A+B))=-tan(A+B)
tan(A+B)
=(tanA+tanB)/(1-tanAtanB)
=(1/4+3/5)/(1-1/4×3/5)
=(17/20)/(17/20)
=1
tanC=-1,因为0<C<180
所以C=135°
tanA<tanB,且A<B
所以A角所对的边最短
sinC=根号2/2,sinA=根号17/17
由正弦定理得
根号17/(根号2/2)=a/(根号17/17)
a=根号2,即三角形ABC的最短边长是根号2
所以C=180-(A+B)
tanC=tan(180-(A+B))=-tan(A+B)
tan(A+B)
=(tanA+tanB)/(1-tanAtanB)
=(1/4+3/5)/(1-1/4×3/5)
=(17/20)/(17/20)
=1
tanC=-1,因为0<C<180
所以C=135°
tanA<tanB,且A<B
所以A角所对的边最短
sinC=根号2/2,sinA=根号17/17
由正弦定理得
根号17/(根号2/2)=a/(根号17/17)
a=根号2,即三角形ABC的最短边长是根号2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询