在△ABC中tanA=1/4,tanB=3/5.(I)求角C的大小;(II)若△ABC最大边的边长为√17,求最小边的边长。

慕野清流
2012-05-26 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2310万
展开全部
因为A+B+C=180
所以C=180-(A+B)
tanC=tan(180-(A+B))=-tan(A+B)

tan(A+B)
=(tanA+tanB)/(1-tanAtanB)
=(1/4+3/5)/(1-1/4×3/5)
=(17/20)/(17/20)
=1
tanC=-1,因为0<C<180
所以C=135°

tanA<tanB,且A<B
所以A角所对的边最短
sinC=根号2/2,sinA=根号17/17
由正弦定理得
根号17/(根号2/2)=a/(根号17/17)
a=根号2,即三角形ABC的最短边长是根号2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式