如图,已知∠aob=120°,om平分∠aob等边三角形的一个顶点P放在射线OM上,两边分别与
如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转...
如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交
的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.
.... 展开
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交
的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.
.... 展开
1个回答
展开全部
解:(1)PC和PD相等.
理由:∵OM平分∠AOB,
∴∠POC=∠POD=60°,
∵PC⊥OA,
∴∠CPO=180°-90°-60°=30°,
∵∠CPC′=∠D′PD,
∴∠CPD=60°,
∴∠DPO=30°,
∴∠CPO=∠DPO;
∵PO=PO,
∴根据“ASA”,可以得到△PCO≌△PDO,
∴PC=PD.
理由:∵OM平分∠AOB,
∴∠POC=∠POD=60°,
∵PC⊥OA,
∴∠CPO=180°-90°-60°=30°,
∵∠CPC′=∠D′PD,
∴∠CPD=60°,
∴∠DPO=30°,
∴∠CPO=∠DPO;
∵PO=PO,
∴根据“ASA”,可以得到△PCO≌△PDO,
∴PC=PD.
追问
第二第三题呢
追答
(1)证明:∵OP平分∠AOB,PC⊥OA于C,
OM平分∠AOB,
∴∠CPO=∠OPD=30°,∠AOP=∠POB=60°,
∴PD⊥OB于D,
∴PC=PD.(角平分线上的点到角的两边的距离相等)
(2)解:PC=PD.
过P点作PM⊥OA于M,PN⊥OB于N.
由(1)得 PM=PN.
∵∠AOB=120°,
∴∠MPN=360°-90°-90°-120°=60°.
∴∠MPC=∠NPD=60°-∠CPN.
∴△PMC≌△PND.(ASA)
∴PC=PD.
(3)解:PC=PD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询